|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- marsyas/gtzan |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: wav2vec2-base-finetuned-gtzan |
|
results: |
|
- task: |
|
name: Audio Classification |
|
type: audio-classification |
|
dataset: |
|
name: GTZAN |
|
type: marsyas/gtzan |
|
config: all |
|
split: train |
|
args: all |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.83 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-base-finetuned-gtzan |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the GTZAN dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7926 |
|
- Accuracy: 0.83 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 2.0468 | 1.0 | 113 | 2.0109 | 0.41 | |
|
| 1.6902 | 2.0 | 226 | 1.6493 | 0.5 | |
|
| 1.0179 | 3.0 | 339 | 1.4098 | 0.59 | |
|
| 1.1239 | 4.0 | 452 | 1.1319 | 0.67 | |
|
| 0.7065 | 5.0 | 565 | 0.9650 | 0.73 | |
|
| 0.546 | 6.0 | 678 | 0.9210 | 0.75 | |
|
| 0.535 | 7.0 | 791 | 0.7329 | 0.81 | |
|
| 0.3793 | 8.0 | 904 | 0.5348 | 0.86 | |
|
| 0.6647 | 9.0 | 1017 | 0.6605 | 0.84 | |
|
| 0.3996 | 10.0 | 1130 | 0.7797 | 0.83 | |
|
| 0.432 | 11.0 | 1243 | 0.7763 | 0.83 | |
|
| 0.0538 | 12.0 | 1356 | 0.7716 | 0.84 | |
|
| 0.0858 | 13.0 | 1469 | 0.7953 | 0.82 | |
|
| 0.3906 | 14.0 | 1582 | 0.7821 | 0.84 | |
|
| 0.2496 | 15.0 | 1695 | 0.9718 | 0.83 | |
|
| 0.13 | 16.0 | 1808 | 0.7773 | 0.85 | |
|
| 0.1103 | 17.0 | 1921 | 0.6670 | 0.88 | |
|
| 0.1443 | 18.0 | 2034 | 0.8843 | 0.84 | |
|
| 0.0083 | 19.0 | 2147 | 0.7977 | 0.84 | |
|
| 0.0086 | 20.0 | 2260 | 0.7926 | 0.83 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0.dev0 |
|
- Pytorch 1.13.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.13.3 |
|
|