update model card README.md
Browse files
README.md
CHANGED
@@ -21,7 +21,7 @@ model-index:
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
-
value: 0.
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -31,8 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
31 |
|
32 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
-
- Loss: 0.
|
35 |
-
- Accuracy: 0.
|
36 |
|
37 |
## Model description
|
38 |
|
@@ -51,34 +51,39 @@ More information needed
|
|
51 |
### Training hyperparameters
|
52 |
|
53 |
The following hyperparameters were used during training:
|
54 |
-
- learning_rate:
|
55 |
- train_batch_size: 16
|
56 |
- eval_batch_size: 16
|
57 |
- seed: 42
|
58 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
- lr_scheduler_type: linear
|
60 |
- lr_scheduler_warmup_ratio: 0.1
|
61 |
-
- num_epochs:
|
62 |
|
63 |
### Training results
|
64 |
|
65 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
67 |
-
| 2.
|
68 |
-
| 1.
|
69 |
-
| 1.
|
70 |
-
| 1.
|
71 |
-
|
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
|
84 |
### Framework versions
|
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
+
value: 0.85
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
31 |
|
32 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.5990
|
35 |
+
- Accuracy: 0.85
|
36 |
|
37 |
## Model description
|
38 |
|
|
|
51 |
### Training hyperparameters
|
52 |
|
53 |
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 4e-05
|
55 |
- train_batch_size: 16
|
56 |
- eval_batch_size: 16
|
57 |
- seed: 42
|
58 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
- lr_scheduler_type: linear
|
60 |
- lr_scheduler_warmup_ratio: 0.1
|
61 |
+
- num_epochs: 20
|
62 |
|
63 |
### Training results
|
64 |
|
65 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
67 |
+
| 2.2435 | 1.0 | 57 | 2.2120 | 0.4 |
|
68 |
+
| 1.7899 | 2.0 | 114 | 1.7033 | 0.51 |
|
69 |
+
| 1.3321 | 3.0 | 171 | 1.3450 | 0.66 |
|
70 |
+
| 1.2031 | 4.0 | 228 | 1.1139 | 0.68 |
|
71 |
+
| 0.9076 | 5.0 | 285 | 0.9759 | 0.72 |
|
72 |
+
| 0.8037 | 6.0 | 342 | 0.8595 | 0.7 |
|
73 |
+
| 0.6698 | 7.0 | 399 | 0.7222 | 0.78 |
|
74 |
+
| 0.5379 | 8.0 | 456 | 0.6924 | 0.81 |
|
75 |
+
| 0.4473 | 9.0 | 513 | 0.6366 | 0.82 |
|
76 |
+
| 0.2804 | 10.0 | 570 | 0.5824 | 0.83 |
|
77 |
+
| 0.251 | 11.0 | 627 | 0.6684 | 0.8 |
|
78 |
+
| 0.1587 | 12.0 | 684 | 0.5439 | 0.85 |
|
79 |
+
| 0.161 | 13.0 | 741 | 0.5983 | 0.84 |
|
80 |
+
| 0.0886 | 14.0 | 798 | 0.6164 | 0.83 |
|
81 |
+
| 0.0726 | 15.0 | 855 | 0.5598 | 0.85 |
|
82 |
+
| 0.1023 | 16.0 | 912 | 0.5753 | 0.85 |
|
83 |
+
| 0.0608 | 17.0 | 969 | 0.5933 | 0.85 |
|
84 |
+
| 0.04 | 18.0 | 1026 | 0.5728 | 0.84 |
|
85 |
+
| 0.0381 | 19.0 | 1083 | 0.5907 | 0.85 |
|
86 |
+
| 0.0387 | 20.0 | 1140 | 0.5990 | 0.85 |
|
87 |
|
88 |
|
89 |
### Framework versions
|