update model card README.md
Browse files
README.md
CHANGED
@@ -21,7 +21,7 @@ model-index:
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
-
value: 0.
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -31,8 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
31 |
|
32 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
-
- Loss: 0.
|
35 |
-
- Accuracy: 0.
|
36 |
|
37 |
## Model description
|
38 |
|
@@ -51,7 +51,7 @@ More information needed
|
|
51 |
### Training hyperparameters
|
52 |
|
53 |
The following hyperparameters were used during training:
|
54 |
-
- learning_rate:
|
55 |
- train_batch_size: 16
|
56 |
- eval_batch_size: 16
|
57 |
- seed: 42
|
@@ -64,26 +64,23 @@ The following hyperparameters were used during training:
|
|
64 |
|
65 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
67 |
-
| 2.
|
68 |
-
| 1.
|
69 |
-
| 1.
|
70 |
-
| 1.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.04 | 18.0 | 1026 | 0.5728 | 0.84 |
|
85 |
-
| 0.0381 | 19.0 | 1083 | 0.5907 | 0.85 |
|
86 |
-
| 0.0387 | 20.0 | 1140 | 0.5990 | 0.85 |
|
87 |
|
88 |
|
89 |
### Framework versions
|
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
+
value: 0.87
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
31 |
|
32 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.5647
|
35 |
+
- Accuracy: 0.87
|
36 |
|
37 |
## Model description
|
38 |
|
|
|
51 |
### Training hyperparameters
|
52 |
|
53 |
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 5e-05
|
55 |
- train_batch_size: 16
|
56 |
- eval_batch_size: 16
|
57 |
- seed: 42
|
|
|
64 |
|
65 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
67 |
+
| 2.2278 | 1.0 | 57 | 2.1709 | 0.44 |
|
68 |
+
| 1.7173 | 2.0 | 114 | 1.6084 | 0.57 |
|
69 |
+
| 1.1979 | 3.0 | 171 | 1.1897 | 0.67 |
|
70 |
+
| 1.1177 | 4.0 | 228 | 1.0003 | 0.72 |
|
71 |
+
| 0.8526 | 5.0 | 285 | 0.8854 | 0.73 |
|
72 |
+
| 0.6463 | 6.0 | 342 | 0.7791 | 0.79 |
|
73 |
+
| 0.5461 | 7.0 | 399 | 0.7468 | 0.78 |
|
74 |
+
| 0.3953 | 8.0 | 456 | 0.7352 | 0.75 |
|
75 |
+
| 0.3054 | 9.0 | 513 | 0.6757 | 0.79 |
|
76 |
+
| 0.18 | 10.0 | 570 | 0.5711 | 0.76 |
|
77 |
+
| 0.1526 | 11.0 | 627 | 0.6026 | 0.85 |
|
78 |
+
| 0.0812 | 12.0 | 684 | 0.5876 | 0.82 |
|
79 |
+
| 0.0578 | 13.0 | 741 | 0.5815 | 0.85 |
|
80 |
+
| 0.0318 | 14.0 | 798 | 0.5828 | 0.85 |
|
81 |
+
| 0.0283 | 15.0 | 855 | 0.5960 | 0.85 |
|
82 |
+
| 0.0393 | 16.0 | 912 | 0.5674 | 0.85 |
|
83 |
+
| 0.018 | 17.0 | 969 | 0.5647 | 0.87 |
|
|
|
|
|
|
|
84 |
|
85 |
|
86 |
### Framework versions
|