update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- marsyas/gtzan
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: distilhubert-finetuned-gtzan
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Audio Classification
|
14 |
+
type: audio-classification
|
15 |
+
dataset:
|
16 |
+
name: GTZAN
|
17 |
+
type: marsyas/gtzan
|
18 |
+
config: all
|
19 |
+
split: train
|
20 |
+
args: all
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 0.84
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# distilhubert-finetuned-gtzan
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.5916
|
35 |
+
- Accuracy: 0.84
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 2.5e-05
|
55 |
+
- train_batch_size: 16
|
56 |
+
- eval_batch_size: 16
|
57 |
+
- seed: 42
|
58 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: linear
|
60 |
+
- lr_scheduler_warmup_ratio: 0.1
|
61 |
+
- num_epochs: 20
|
62 |
+
|
63 |
+
### Training results
|
64 |
+
|
65 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
67 |
+
| 2.2746 | 1.0 | 57 | 2.2507 | 0.28 |
|
68 |
+
| 2.0451 | 2.0 | 114 | 1.9551 | 0.5 |
|
69 |
+
| 1.6461 | 3.0 | 171 | 1.5926 | 0.68 |
|
70 |
+
| 1.5045 | 4.0 | 228 | 1.3429 | 0.75 |
|
71 |
+
| 1.2469 | 5.0 | 285 | 1.1902 | 0.75 |
|
72 |
+
| 1.12 | 6.0 | 342 | 1.1030 | 0.74 |
|
73 |
+
| 1.0061 | 7.0 | 399 | 0.9923 | 0.77 |
|
74 |
+
| 0.9674 | 8.0 | 456 | 0.8894 | 0.81 |
|
75 |
+
| 0.8545 | 9.0 | 513 | 0.8524 | 0.82 |
|
76 |
+
| 0.6644 | 10.0 | 570 | 0.8045 | 0.81 |
|
77 |
+
| 0.5531 | 11.0 | 627 | 0.8388 | 0.8 |
|
78 |
+
| 0.5411 | 12.0 | 684 | 0.6921 | 0.83 |
|
79 |
+
| 0.4759 | 13.0 | 741 | 0.7136 | 0.83 |
|
80 |
+
| 0.4236 | 14.0 | 798 | 0.6716 | 0.83 |
|
81 |
+
| 0.4235 | 15.0 | 855 | 0.6322 | 0.82 |
|
82 |
+
| 0.4098 | 16.0 | 912 | 0.6108 | 0.83 |
|
83 |
+
| 0.3988 | 17.0 | 969 | 0.6296 | 0.85 |
|
84 |
+
| 0.3493 | 18.0 | 1026 | 0.5921 | 0.83 |
|
85 |
+
| 0.3143 | 19.0 | 1083 | 0.5948 | 0.84 |
|
86 |
+
| 0.3036 | 20.0 | 1140 | 0.5916 | 0.84 |
|
87 |
+
|
88 |
+
|
89 |
+
### Framework versions
|
90 |
+
|
91 |
+
- Transformers 4.31.0.dev0
|
92 |
+
- Pytorch 1.13.0
|
93 |
+
- Datasets 2.1.0
|
94 |
+
- Tokenizers 0.13.3
|