upload model
Browse files- README.md +93 -0
- all_results.json +12 -0
- config.json +255 -0
- openvino_config.json +86 -0
- openvino_model.bin +3 -0
- openvino_model.xml +3 -0
- preprocessor_config.json +23 -0
- pytorch_model.bin +3 -0
- structured_sparsity.csv +145 -0
- trainer_state.json +0 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- image-classification
|
5 |
+
- vision
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- food101
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: swin-food101-jpqd-1to2r1.5-epo7-finetuned-student
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Image Classification
|
16 |
+
type: image-classification
|
17 |
+
dataset:
|
18 |
+
name: food101
|
19 |
+
type: food101
|
20 |
+
config: default
|
21 |
+
split: validation
|
22 |
+
args: default
|
23 |
+
metrics:
|
24 |
+
- name: Accuracy
|
25 |
+
type: accuracy
|
26 |
+
value: 0.9123960396039604
|
27 |
+
---
|
28 |
+
|
29 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
30 |
+
should probably proofread and complete it, then remove this comment. -->
|
31 |
+
|
32 |
+
# swin-food101-jpqd-1to2r1.5-epo7-finetuned-student
|
33 |
+
|
34 |
+
This model is a fine-tuned version of [skylord/swin-finetuned-food101](https://huggingface.co/skylord/swin-finetuned-food101) on the food101 dataset.
|
35 |
+
It achieves the following results on the evaluation set:
|
36 |
+
- Loss: 0.2658
|
37 |
+
- Accuracy: 0.9124
|
38 |
+
|
39 |
+
## Model description
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Intended uses & limitations
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training and evaluation data
|
48 |
+
|
49 |
+
More information needed
|
50 |
+
|
51 |
+
## Training procedure
|
52 |
+
|
53 |
+
### Training hyperparameters
|
54 |
+
|
55 |
+
The following hyperparameters were used during training:
|
56 |
+
- learning_rate: 5e-05
|
57 |
+
- train_batch_size: 16
|
58 |
+
- eval_batch_size: 128
|
59 |
+
- seed: 42
|
60 |
+
- gradient_accumulation_steps: 4
|
61 |
+
- total_train_batch_size: 64
|
62 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
+
- lr_scheduler_type: linear
|
64 |
+
- num_epochs: 7.0
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
+
| 0.2977 | 0.42 | 500 | 0.1949 | 0.9112 |
|
71 |
+
| 0.3183 | 0.84 | 1000 | 0.1867 | 0.9144 |
|
72 |
+
| 99.9552 | 1.27 | 1500 | 99.4882 | 0.7577 |
|
73 |
+
| 162.4195 | 1.69 | 2000 | 162.7763 | 0.3373 |
|
74 |
+
| 1.2272 | 2.11 | 2500 | 0.7333 | 0.8564 |
|
75 |
+
| 1.0236 | 2.54 | 3000 | 0.5016 | 0.8823 |
|
76 |
+
| 0.6472 | 2.96 | 3500 | 0.4337 | 0.8908 |
|
77 |
+
| 0.52 | 3.38 | 4000 | 0.3927 | 0.8974 |
|
78 |
+
| 0.6075 | 3.8 | 4500 | 0.3506 | 0.9011 |
|
79 |
+
| 0.5348 | 4.23 | 5000 | 0.3425 | 0.9006 |
|
80 |
+
| 0.444 | 4.65 | 5500 | 0.3268 | 0.9044 |
|
81 |
+
| 0.5787 | 5.07 | 6000 | 0.3020 | 0.9078 |
|
82 |
+
| 0.3995 | 5.49 | 6500 | 0.2932 | 0.9095 |
|
83 |
+
| 0.414 | 5.92 | 7000 | 0.2806 | 0.9104 |
|
84 |
+
| 0.4386 | 6.34 | 7500 | 0.2738 | 0.9112 |
|
85 |
+
| 0.452 | 6.76 | 8000 | 0.2673 | 0.9127 |
|
86 |
+
|
87 |
+
|
88 |
+
### Framework versions
|
89 |
+
|
90 |
+
- Transformers 4.26.0
|
91 |
+
- Pytorch 1.13.1+cu116
|
92 |
+
- Datasets 2.8.0
|
93 |
+
- Tokenizers 0.13.2
|
all_results.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 7.0,
|
3 |
+
"eval_accuracy": 0.9123960396039604,
|
4 |
+
"eval_loss": 0.2658494710922241,
|
5 |
+
"eval_runtime": 228.1316,
|
6 |
+
"eval_samples_per_second": 110.682,
|
7 |
+
"eval_steps_per_second": 0.868,
|
8 |
+
"train_loss": 18.350530295344083,
|
9 |
+
"train_runtime": 37482.3852,
|
10 |
+
"train_samples_per_second": 14.147,
|
11 |
+
"train_steps_per_second": 0.221
|
12 |
+
}
|
config.json
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "skylord/swin-finetuned-food101",
|
3 |
+
"architectures": [
|
4 |
+
"NNCFNetwork"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"depths": [
|
8 |
+
2,
|
9 |
+
2,
|
10 |
+
18,
|
11 |
+
2
|
12 |
+
],
|
13 |
+
"drop_path_rate": 0.1,
|
14 |
+
"embed_dim": 128,
|
15 |
+
"encoder_stride": 32,
|
16 |
+
"finetuning_task": "image-classification",
|
17 |
+
"hidden_act": "gelu",
|
18 |
+
"hidden_dropout_prob": 0.0,
|
19 |
+
"hidden_size": 1024,
|
20 |
+
"id2label": {
|
21 |
+
"0": "apple_pie",
|
22 |
+
"1": "baby_back_ribs",
|
23 |
+
"10": "bruschetta",
|
24 |
+
"100": "waffles",
|
25 |
+
"11": "caesar_salad",
|
26 |
+
"12": "cannoli",
|
27 |
+
"13": "caprese_salad",
|
28 |
+
"14": "carrot_cake",
|
29 |
+
"15": "ceviche",
|
30 |
+
"16": "cheesecake",
|
31 |
+
"17": "cheese_plate",
|
32 |
+
"18": "chicken_curry",
|
33 |
+
"19": "chicken_quesadilla",
|
34 |
+
"2": "baklava",
|
35 |
+
"20": "chicken_wings",
|
36 |
+
"21": "chocolate_cake",
|
37 |
+
"22": "chocolate_mousse",
|
38 |
+
"23": "churros",
|
39 |
+
"24": "clam_chowder",
|
40 |
+
"25": "club_sandwich",
|
41 |
+
"26": "crab_cakes",
|
42 |
+
"27": "creme_brulee",
|
43 |
+
"28": "croque_madame",
|
44 |
+
"29": "cup_cakes",
|
45 |
+
"3": "beef_carpaccio",
|
46 |
+
"30": "deviled_eggs",
|
47 |
+
"31": "donuts",
|
48 |
+
"32": "dumplings",
|
49 |
+
"33": "edamame",
|
50 |
+
"34": "eggs_benedict",
|
51 |
+
"35": "escargots",
|
52 |
+
"36": "falafel",
|
53 |
+
"37": "filet_mignon",
|
54 |
+
"38": "fish_and_chips",
|
55 |
+
"39": "foie_gras",
|
56 |
+
"4": "beef_tartare",
|
57 |
+
"40": "french_fries",
|
58 |
+
"41": "french_onion_soup",
|
59 |
+
"42": "french_toast",
|
60 |
+
"43": "fried_calamari",
|
61 |
+
"44": "fried_rice",
|
62 |
+
"45": "frozen_yogurt",
|
63 |
+
"46": "garlic_bread",
|
64 |
+
"47": "gnocchi",
|
65 |
+
"48": "greek_salad",
|
66 |
+
"49": "grilled_cheese_sandwich",
|
67 |
+
"5": "beet_salad",
|
68 |
+
"50": "grilled_salmon",
|
69 |
+
"51": "guacamole",
|
70 |
+
"52": "gyoza",
|
71 |
+
"53": "hamburger",
|
72 |
+
"54": "hot_and_sour_soup",
|
73 |
+
"55": "hot_dog",
|
74 |
+
"56": "huevos_rancheros",
|
75 |
+
"57": "hummus",
|
76 |
+
"58": "ice_cream",
|
77 |
+
"59": "lasagna",
|
78 |
+
"6": "beignets",
|
79 |
+
"60": "lobster_bisque",
|
80 |
+
"61": "lobster_roll_sandwich",
|
81 |
+
"62": "macaroni_and_cheese",
|
82 |
+
"63": "macarons",
|
83 |
+
"64": "miso_soup",
|
84 |
+
"65": "mussels",
|
85 |
+
"66": "nachos",
|
86 |
+
"67": "omelette",
|
87 |
+
"68": "onion_rings",
|
88 |
+
"69": "oysters",
|
89 |
+
"7": "bibimbap",
|
90 |
+
"70": "pad_thai",
|
91 |
+
"71": "paella",
|
92 |
+
"72": "pancakes",
|
93 |
+
"73": "panna_cotta",
|
94 |
+
"74": "peking_duck",
|
95 |
+
"75": "pho",
|
96 |
+
"76": "pizza",
|
97 |
+
"77": "pork_chop",
|
98 |
+
"78": "poutine",
|
99 |
+
"79": "prime_rib",
|
100 |
+
"8": "bread_pudding",
|
101 |
+
"80": "pulled_pork_sandwich",
|
102 |
+
"81": "ramen",
|
103 |
+
"82": "ravioli",
|
104 |
+
"83": "red_velvet_cake",
|
105 |
+
"84": "risotto",
|
106 |
+
"85": "samosa",
|
107 |
+
"86": "sashimi",
|
108 |
+
"87": "scallops",
|
109 |
+
"88": "seaweed_salad",
|
110 |
+
"89": "shrimp_and_grits",
|
111 |
+
"9": "breakfast_burrito",
|
112 |
+
"90": "spaghetti_bolognese",
|
113 |
+
"91": "spaghetti_carbonara",
|
114 |
+
"92": "spring_rolls",
|
115 |
+
"93": "steak",
|
116 |
+
"94": "strawberry_shortcake",
|
117 |
+
"95": "sushi",
|
118 |
+
"96": "tacos",
|
119 |
+
"97": "takoyaki",
|
120 |
+
"98": "tiramisu",
|
121 |
+
"99": "tuna_tartare"
|
122 |
+
},
|
123 |
+
"image_size": 224,
|
124 |
+
"initializer_range": 0.02,
|
125 |
+
"label2id": {
|
126 |
+
"apple_pie": "0",
|
127 |
+
"baby_back_ribs": "1",
|
128 |
+
"baklava": "2",
|
129 |
+
"beef_carpaccio": "3",
|
130 |
+
"beef_tartare": "4",
|
131 |
+
"beet_salad": "5",
|
132 |
+
"beignets": "6",
|
133 |
+
"bibimbap": "7",
|
134 |
+
"bread_pudding": "8",
|
135 |
+
"breakfast_burrito": "9",
|
136 |
+
"bruschetta": "10",
|
137 |
+
"caesar_salad": "11",
|
138 |
+
"cannoli": "12",
|
139 |
+
"caprese_salad": "13",
|
140 |
+
"carrot_cake": "14",
|
141 |
+
"ceviche": "15",
|
142 |
+
"cheese_plate": "17",
|
143 |
+
"cheesecake": "16",
|
144 |
+
"chicken_curry": "18",
|
145 |
+
"chicken_quesadilla": "19",
|
146 |
+
"chicken_wings": "20",
|
147 |
+
"chocolate_cake": "21",
|
148 |
+
"chocolate_mousse": "22",
|
149 |
+
"churros": "23",
|
150 |
+
"clam_chowder": "24",
|
151 |
+
"club_sandwich": "25",
|
152 |
+
"crab_cakes": "26",
|
153 |
+
"creme_brulee": "27",
|
154 |
+
"croque_madame": "28",
|
155 |
+
"cup_cakes": "29",
|
156 |
+
"deviled_eggs": "30",
|
157 |
+
"donuts": "31",
|
158 |
+
"dumplings": "32",
|
159 |
+
"edamame": "33",
|
160 |
+
"eggs_benedict": "34",
|
161 |
+
"escargots": "35",
|
162 |
+
"falafel": "36",
|
163 |
+
"filet_mignon": "37",
|
164 |
+
"fish_and_chips": "38",
|
165 |
+
"foie_gras": "39",
|
166 |
+
"french_fries": "40",
|
167 |
+
"french_onion_soup": "41",
|
168 |
+
"french_toast": "42",
|
169 |
+
"fried_calamari": "43",
|
170 |
+
"fried_rice": "44",
|
171 |
+
"frozen_yogurt": "45",
|
172 |
+
"garlic_bread": "46",
|
173 |
+
"gnocchi": "47",
|
174 |
+
"greek_salad": "48",
|
175 |
+
"grilled_cheese_sandwich": "49",
|
176 |
+
"grilled_salmon": "50",
|
177 |
+
"guacamole": "51",
|
178 |
+
"gyoza": "52",
|
179 |
+
"hamburger": "53",
|
180 |
+
"hot_and_sour_soup": "54",
|
181 |
+
"hot_dog": "55",
|
182 |
+
"huevos_rancheros": "56",
|
183 |
+
"hummus": "57",
|
184 |
+
"ice_cream": "58",
|
185 |
+
"lasagna": "59",
|
186 |
+
"lobster_bisque": "60",
|
187 |
+
"lobster_roll_sandwich": "61",
|
188 |
+
"macaroni_and_cheese": "62",
|
189 |
+
"macarons": "63",
|
190 |
+
"miso_soup": "64",
|
191 |
+
"mussels": "65",
|
192 |
+
"nachos": "66",
|
193 |
+
"omelette": "67",
|
194 |
+
"onion_rings": "68",
|
195 |
+
"oysters": "69",
|
196 |
+
"pad_thai": "70",
|
197 |
+
"paella": "71",
|
198 |
+
"pancakes": "72",
|
199 |
+
"panna_cotta": "73",
|
200 |
+
"peking_duck": "74",
|
201 |
+
"pho": "75",
|
202 |
+
"pizza": "76",
|
203 |
+
"pork_chop": "77",
|
204 |
+
"poutine": "78",
|
205 |
+
"prime_rib": "79",
|
206 |
+
"pulled_pork_sandwich": "80",
|
207 |
+
"ramen": "81",
|
208 |
+
"ravioli": "82",
|
209 |
+
"red_velvet_cake": "83",
|
210 |
+
"risotto": "84",
|
211 |
+
"samosa": "85",
|
212 |
+
"sashimi": "86",
|
213 |
+
"scallops": "87",
|
214 |
+
"seaweed_salad": "88",
|
215 |
+
"shrimp_and_grits": "89",
|
216 |
+
"spaghetti_bolognese": "90",
|
217 |
+
"spaghetti_carbonara": "91",
|
218 |
+
"spring_rolls": "92",
|
219 |
+
"steak": "93",
|
220 |
+
"strawberry_shortcake": "94",
|
221 |
+
"sushi": "95",
|
222 |
+
"tacos": "96",
|
223 |
+
"takoyaki": "97",
|
224 |
+
"tiramisu": "98",
|
225 |
+
"tuna_tartare": "99",
|
226 |
+
"waffles": "100"
|
227 |
+
},
|
228 |
+
"layer_norm_eps": 1e-05,
|
229 |
+
"mlp_ratio": 4.0,
|
230 |
+
"model_type": "swin",
|
231 |
+
"num_channels": 3,
|
232 |
+
"num_heads": [
|
233 |
+
4,
|
234 |
+
8,
|
235 |
+
16,
|
236 |
+
32
|
237 |
+
],
|
238 |
+
"num_layers": 4,
|
239 |
+
"out_features": null,
|
240 |
+
"patch_size": 4,
|
241 |
+
"path_norm": true,
|
242 |
+
"problem_type": "single_label_classification",
|
243 |
+
"qkv_bias": true,
|
244 |
+
"stage_names": [
|
245 |
+
"stem",
|
246 |
+
"stage1",
|
247 |
+
"stage2",
|
248 |
+
"stage3",
|
249 |
+
"stage4"
|
250 |
+
],
|
251 |
+
"torch_dtype": "float32",
|
252 |
+
"transformers_version": "4.26.0",
|
253 |
+
"use_absolute_embeddings": false,
|
254 |
+
"window_size": 7
|
255 |
+
}
|
openvino_config.json
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"compression": [
|
3 |
+
{
|
4 |
+
"algorithm": "movement_sparsity",
|
5 |
+
"ignored_scopes": [
|
6 |
+
"{re}.*PatchEmbed.*",
|
7 |
+
"{re}.*PatchMerging.*",
|
8 |
+
"{re}.*classifier.*",
|
9 |
+
"{re}.*LayerNorm.*"
|
10 |
+
],
|
11 |
+
"params": {
|
12 |
+
"enable_structured_masking": true,
|
13 |
+
"importance_regularization_factor": 1.5,
|
14 |
+
"warmup_end_epoch": 2,
|
15 |
+
"warmup_start_epoch": 1
|
16 |
+
},
|
17 |
+
"sparse_structure_by_scopes": [
|
18 |
+
{
|
19 |
+
"mode": "block",
|
20 |
+
"sparse_factors": [
|
21 |
+
16,
|
22 |
+
16
|
23 |
+
],
|
24 |
+
"target_scopes": "{re}.*SwinAttention.*"
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"axis": 0,
|
28 |
+
"mode": "per_dim",
|
29 |
+
"target_scopes": "{re}.*SwinIntermediate.*"
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"axis": 1,
|
33 |
+
"mode": "per_dim",
|
34 |
+
"target_scopes": "{re}.*SwinOutput.*"
|
35 |
+
}
|
36 |
+
]
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"algorithm": "quantization",
|
40 |
+
"export_to_onnx_standard_ops": false,
|
41 |
+
"ignored_scopes": [
|
42 |
+
"{re}.*__add___[0-1]",
|
43 |
+
"{re}.*layer_norm_0",
|
44 |
+
"{re}.*matmul_1",
|
45 |
+
"{re}.*__truediv__*"
|
46 |
+
],
|
47 |
+
"initializer": {
|
48 |
+
"batchnorm_adaptation": {
|
49 |
+
"num_bn_adaptation_samples": 200
|
50 |
+
},
|
51 |
+
"range": {
|
52 |
+
"num_init_samples": 32,
|
53 |
+
"params": {
|
54 |
+
"max_percentile": 99.99,
|
55 |
+
"min_percentile": 0.01
|
56 |
+
},
|
57 |
+
"type": "percentile"
|
58 |
+
}
|
59 |
+
},
|
60 |
+
"overflow_fix": "enable",
|
61 |
+
"preset": "mixed",
|
62 |
+
"scope_overrides": {
|
63 |
+
"activations": {
|
64 |
+
"{re}.*matmul_0": {
|
65 |
+
"mode": "symmetric"
|
66 |
+
}
|
67 |
+
}
|
68 |
+
}
|
69 |
+
}
|
70 |
+
],
|
71 |
+
"input_info": [
|
72 |
+
{
|
73 |
+
"keyword": "pixel_values",
|
74 |
+
"sample_size": [
|
75 |
+
16,
|
76 |
+
3,
|
77 |
+
224,
|
78 |
+
224
|
79 |
+
],
|
80 |
+
"type": "float"
|
81 |
+
}
|
82 |
+
],
|
83 |
+
"optimum_version": "1.6.3",
|
84 |
+
"save_onnx_model": false,
|
85 |
+
"transformers_version": "4.26.0"
|
86 |
+
}
|
openvino_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df7508f98eaf8c3e85d9d18fd584f83785927d4b29bbf4b0c49730af7731ad6e
|
3 |
+
size 57467668
|
openvino_model.xml
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:780408c571b7f04617d51a76d20fccbf84fe7442a219d736898a4bdb4cc85b0b
|
3 |
+
size 10499070
|
preprocessor_config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"do_rescale": true,
|
4 |
+
"do_resize": true,
|
5 |
+
"feature_extractor_type": "ViTFeatureExtractor",
|
6 |
+
"image_mean": [
|
7 |
+
0.485,
|
8 |
+
0.456,
|
9 |
+
0.406
|
10 |
+
],
|
11 |
+
"image_processor_type": "ViTFeatureExtractor",
|
12 |
+
"image_std": [
|
13 |
+
0.229,
|
14 |
+
0.224,
|
15 |
+
0.225
|
16 |
+
],
|
17 |
+
"resample": 3,
|
18 |
+
"rescale_factor": 0.00392156862745098,
|
19 |
+
"size": {
|
20 |
+
"height": 224,
|
21 |
+
"width": 224
|
22 |
+
}
|
23 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a595da5f8dc53fd4eb8d06539dc0e72af75f0f8bb038ac0931b4d764d3cca25
|
3 |
+
size 685689463
|
structured_sparsity.csv
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,group_id,type,torch_module,weight_shape,pruned_weight_shape,bias_shape,pruned_bias_shape,head_or_channel_id_to_keep,module_node_name
|
2 |
+
0,0,MHSA,nncf_module.swin.encoder.layers.0.blocks.0.attention.self.query,"(128, 128)","(32, 128)","(128,)","(32,)",[1],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[0]/ModuleList[blocks]/SwinLayer[0]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[query]/linear_0
|
3 |
+
1,0,MHSA,nncf_module.swin.encoder.layers.0.blocks.0.attention.self.key,"(128, 128)","(32, 128)","(128,)","(32,)",[1],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[0]/ModuleList[blocks]/SwinLayer[0]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[key]/linear_0
|
4 |
+
2,0,MHSA,nncf_module.swin.encoder.layers.0.blocks.0.attention.self.value,"(128, 128)","(32, 128)","(128,)","(32,)",[1],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[0]/ModuleList[blocks]/SwinLayer[0]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[value]/linear_0
|
5 |
+
3,0,MHSA,nncf_module.swin.encoder.layers.0.blocks.0.attention.output.dense,"(128, 128)","(128, 32)","(128,)","(128,)",[1],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[0]/ModuleList[blocks]/SwinLayer[0]/SwinAttention[attention]/SwinSelfOutput[output]/NNCFLinear[dense]/linear_0
|
6 |
+
4,1,FF,nncf_module.swin.encoder.layers.0.blocks.0.intermediate.dense,"(512, 128)","(309, 128)","(512,)","(309,)",[309 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[0]/ModuleList[blocks]/SwinLayer[0]/SwinIntermediate[intermediate]/NNCFLinear[dense]/linear_0
|
7 |
+
5,1,FF,nncf_module.swin.encoder.layers.0.blocks.0.output.dense,"(128, 512)","(128, 309)","(128,)","(128,)",[309 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[0]/ModuleList[blocks]/SwinLayer[0]/SwinOutput[output]/NNCFLinear[dense]/linear_0
|
8 |
+
6,2,MHSA,nncf_module.swin.encoder.layers.0.blocks.1.attention.self.query,"(128, 128)","(64, 128)","(128,)","(64,)","[2, 3]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[0]/ModuleList[blocks]/SwinLayer[1]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[query]/linear_0
|
9 |
+
7,2,MHSA,nncf_module.swin.encoder.layers.0.blocks.1.attention.self.key,"(128, 128)","(64, 128)","(128,)","(64,)","[2, 3]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[0]/ModuleList[blocks]/SwinLayer[1]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[key]/linear_0
|
10 |
+
8,2,MHSA,nncf_module.swin.encoder.layers.0.blocks.1.attention.self.value,"(128, 128)","(64, 128)","(128,)","(64,)","[2, 3]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[0]/ModuleList[blocks]/SwinLayer[1]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[value]/linear_0
|
11 |
+
9,2,MHSA,nncf_module.swin.encoder.layers.0.blocks.1.attention.output.dense,"(128, 128)","(128, 64)","(128,)","(128,)","[2, 3]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[0]/ModuleList[blocks]/SwinLayer[1]/SwinAttention[attention]/SwinSelfOutput[output]/NNCFLinear[dense]/linear_0
|
12 |
+
10,3,FF,nncf_module.swin.encoder.layers.0.blocks.1.intermediate.dense,"(512, 128)","(392, 128)","(512,)","(392,)",[392 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[0]/ModuleList[blocks]/SwinLayer[1]/SwinIntermediate[intermediate]/NNCFLinear[dense]/linear_0
|
13 |
+
11,3,FF,nncf_module.swin.encoder.layers.0.blocks.1.output.dense,"(128, 512)","(128, 392)","(128,)","(128,)",[392 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[0]/ModuleList[blocks]/SwinLayer[1]/SwinOutput[output]/NNCFLinear[dense]/linear_0
|
14 |
+
12,4,MHSA,nncf_module.swin.encoder.layers.1.blocks.0.attention.self.query,"(256, 256)","(128, 256)","(256,)","(128,)","[1, 3, 5, 7]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[1]/ModuleList[blocks]/SwinLayer[0]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[query]/linear_0
|
15 |
+
13,4,MHSA,nncf_module.swin.encoder.layers.1.blocks.0.attention.self.key,"(256, 256)","(128, 256)","(256,)","(128,)","[1, 3, 5, 7]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[1]/ModuleList[blocks]/SwinLayer[0]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[key]/linear_0
|
16 |
+
14,4,MHSA,nncf_module.swin.encoder.layers.1.blocks.0.attention.self.value,"(256, 256)","(128, 256)","(256,)","(128,)","[1, 3, 5, 7]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[1]/ModuleList[blocks]/SwinLayer[0]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[value]/linear_0
|
17 |
+
15,4,MHSA,nncf_module.swin.encoder.layers.1.blocks.0.attention.output.dense,"(256, 256)","(256, 128)","(256,)","(256,)","[1, 3, 5, 7]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[1]/ModuleList[blocks]/SwinLayer[0]/SwinAttention[attention]/SwinSelfOutput[output]/NNCFLinear[dense]/linear_0
|
18 |
+
16,5,FF,nncf_module.swin.encoder.layers.1.blocks.0.intermediate.dense,"(1024, 256)","(794, 256)","(1024,)","(794,)",[794 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[1]/ModuleList[blocks]/SwinLayer[0]/SwinIntermediate[intermediate]/NNCFLinear[dense]/linear_0
|
19 |
+
17,5,FF,nncf_module.swin.encoder.layers.1.blocks.0.output.dense,"(256, 1024)","(256, 794)","(256,)","(256,)",[794 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[1]/ModuleList[blocks]/SwinLayer[0]/SwinOutput[output]/NNCFLinear[dense]/linear_0
|
20 |
+
18,6,MHSA,nncf_module.swin.encoder.layers.1.blocks.1.attention.self.query,"(256, 256)","(128, 256)","(256,)","(128,)","[0, 1, 5, 6]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[1]/ModuleList[blocks]/SwinLayer[1]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[query]/linear_0
|
21 |
+
19,6,MHSA,nncf_module.swin.encoder.layers.1.blocks.1.attention.self.key,"(256, 256)","(128, 256)","(256,)","(128,)","[0, 1, 5, 6]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[1]/ModuleList[blocks]/SwinLayer[1]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[key]/linear_0
|
22 |
+
20,6,MHSA,nncf_module.swin.encoder.layers.1.blocks.1.attention.self.value,"(256, 256)","(128, 256)","(256,)","(128,)","[0, 1, 5, 6]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[1]/ModuleList[blocks]/SwinLayer[1]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[value]/linear_0
|
23 |
+
21,6,MHSA,nncf_module.swin.encoder.layers.1.blocks.1.attention.output.dense,"(256, 256)","(256, 128)","(256,)","(256,)","[0, 1, 5, 6]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[1]/ModuleList[blocks]/SwinLayer[1]/SwinAttention[attention]/SwinSelfOutput[output]/NNCFLinear[dense]/linear_0
|
24 |
+
22,7,FF,nncf_module.swin.encoder.layers.1.blocks.1.intermediate.dense,"(1024, 256)","(786, 256)","(1024,)","(786,)",[786 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[1]/ModuleList[blocks]/SwinLayer[1]/SwinIntermediate[intermediate]/NNCFLinear[dense]/linear_0
|
25 |
+
23,7,FF,nncf_module.swin.encoder.layers.1.blocks.1.output.dense,"(256, 1024)","(256, 786)","(256,)","(256,)",[786 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[1]/ModuleList[blocks]/SwinLayer[1]/SwinOutput[output]/NNCFLinear[dense]/linear_0
|
26 |
+
24,8,MHSA,nncf_module.swin.encoder.layers.2.blocks.0.attention.self.query,"(512, 512)","(256, 512)","(512,)","(256,)","[3, 4, 5, 8, 9, 10, 13, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[0]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[query]/linear_0
|
27 |
+
25,8,MHSA,nncf_module.swin.encoder.layers.2.blocks.0.attention.self.key,"(512, 512)","(256, 512)","(512,)","(256,)","[3, 4, 5, 8, 9, 10, 13, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[0]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[key]/linear_0
|
28 |
+
26,8,MHSA,nncf_module.swin.encoder.layers.2.blocks.0.attention.self.value,"(512, 512)","(256, 512)","(512,)","(256,)","[3, 4, 5, 8, 9, 10, 13, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[0]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[value]/linear_0
|
29 |
+
27,8,MHSA,nncf_module.swin.encoder.layers.2.blocks.0.attention.output.dense,"(512, 512)","(512, 256)","(512,)","(512,)","[3, 4, 5, 8, 9, 10, 13, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[0]/SwinAttention[attention]/SwinSelfOutput[output]/NNCFLinear[dense]/linear_0
|
30 |
+
28,9,FF,nncf_module.swin.encoder.layers.2.blocks.0.intermediate.dense,"(2048, 512)","(1240, 512)","(2048,)","(1240,)",[1240 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[0]/SwinIntermediate[intermediate]/NNCFLinear[dense]/linear_0
|
31 |
+
29,9,FF,nncf_module.swin.encoder.layers.2.blocks.0.output.dense,"(512, 2048)","(512, 1240)","(512,)","(512,)",[1240 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[0]/SwinOutput[output]/NNCFLinear[dense]/linear_0
|
32 |
+
30,10,MHSA,nncf_module.swin.encoder.layers.2.blocks.1.attention.self.query,"(512, 512)","(320, 512)","(512,)","(320,)","[1, 3, 6, 7, 9, 10, 11, 12, 13, 14]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[1]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[query]/linear_0
|
33 |
+
31,10,MHSA,nncf_module.swin.encoder.layers.2.blocks.1.attention.self.key,"(512, 512)","(320, 512)","(512,)","(320,)","[1, 3, 6, 7, 9, 10, 11, 12, 13, 14]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[1]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[key]/linear_0
|
34 |
+
32,10,MHSA,nncf_module.swin.encoder.layers.2.blocks.1.attention.self.value,"(512, 512)","(320, 512)","(512,)","(320,)","[1, 3, 6, 7, 9, 10, 11, 12, 13, 14]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[1]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[value]/linear_0
|
35 |
+
33,10,MHSA,nncf_module.swin.encoder.layers.2.blocks.1.attention.output.dense,"(512, 512)","(512, 320)","(512,)","(512,)","[1, 3, 6, 7, 9, 10, 11, 12, 13, 14]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[1]/SwinAttention[attention]/SwinSelfOutput[output]/NNCFLinear[dense]/linear_0
|
36 |
+
34,11,FF,nncf_module.swin.encoder.layers.2.blocks.1.intermediate.dense,"(2048, 512)","(1254, 512)","(2048,)","(1254,)",[1254 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[1]/SwinIntermediate[intermediate]/NNCFLinear[dense]/linear_0
|
37 |
+
35,11,FF,nncf_module.swin.encoder.layers.2.blocks.1.output.dense,"(512, 2048)","(512, 1254)","(512,)","(512,)",[1254 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[1]/SwinOutput[output]/NNCFLinear[dense]/linear_0
|
38 |
+
36,12,MHSA,nncf_module.swin.encoder.layers.2.blocks.2.attention.self.query,"(512, 512)","(320, 512)","(512,)","(320,)","[1, 4, 5, 6, 7, 8, 9, 10, 11, 12]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[2]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[query]/linear_0
|
39 |
+
37,12,MHSA,nncf_module.swin.encoder.layers.2.blocks.2.attention.self.key,"(512, 512)","(320, 512)","(512,)","(320,)","[1, 4, 5, 6, 7, 8, 9, 10, 11, 12]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[2]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[key]/linear_0
|
40 |
+
38,12,MHSA,nncf_module.swin.encoder.layers.2.blocks.2.attention.self.value,"(512, 512)","(320, 512)","(512,)","(320,)","[1, 4, 5, 6, 7, 8, 9, 10, 11, 12]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[2]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[value]/linear_0
|
41 |
+
39,12,MHSA,nncf_module.swin.encoder.layers.2.blocks.2.attention.output.dense,"(512, 512)","(512, 320)","(512,)","(512,)","[1, 4, 5, 6, 7, 8, 9, 10, 11, 12]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[2]/SwinAttention[attention]/SwinSelfOutput[output]/NNCFLinear[dense]/linear_0
|
42 |
+
40,13,FF,nncf_module.swin.encoder.layers.2.blocks.2.intermediate.dense,"(2048, 512)","(1280, 512)","(2048,)","(1280,)",[1280 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[2]/SwinIntermediate[intermediate]/NNCFLinear[dense]/linear_0
|
43 |
+
41,13,FF,nncf_module.swin.encoder.layers.2.blocks.2.output.dense,"(512, 2048)","(512, 1280)","(512,)","(512,)",[1280 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[2]/SwinOutput[output]/NNCFLinear[dense]/linear_0
|
44 |
+
42,14,MHSA,nncf_module.swin.encoder.layers.2.blocks.3.attention.self.query,"(512, 512)","(256, 512)","(512,)","(256,)","[0, 2, 3, 4, 6, 7, 9, 11]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[3]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[query]/linear_0
|
45 |
+
43,14,MHSA,nncf_module.swin.encoder.layers.2.blocks.3.attention.self.key,"(512, 512)","(256, 512)","(512,)","(256,)","[0, 2, 3, 4, 6, 7, 9, 11]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[3]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[key]/linear_0
|
46 |
+
44,14,MHSA,nncf_module.swin.encoder.layers.2.blocks.3.attention.self.value,"(512, 512)","(256, 512)","(512,)","(256,)","[0, 2, 3, 4, 6, 7, 9, 11]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[3]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[value]/linear_0
|
47 |
+
45,14,MHSA,nncf_module.swin.encoder.layers.2.blocks.3.attention.output.dense,"(512, 512)","(512, 256)","(512,)","(512,)","[0, 2, 3, 4, 6, 7, 9, 11]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[3]/SwinAttention[attention]/SwinSelfOutput[output]/NNCFLinear[dense]/linear_0
|
48 |
+
46,15,FF,nncf_module.swin.encoder.layers.2.blocks.3.intermediate.dense,"(2048, 512)","(1202, 512)","(2048,)","(1202,)",[1202 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[3]/SwinIntermediate[intermediate]/NNCFLinear[dense]/linear_0
|
49 |
+
47,15,FF,nncf_module.swin.encoder.layers.2.blocks.3.output.dense,"(512, 2048)","(512, 1202)","(512,)","(512,)",[1202 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[3]/SwinOutput[output]/NNCFLinear[dense]/linear_0
|
50 |
+
48,16,MHSA,nncf_module.swin.encoder.layers.2.blocks.4.attention.self.query,"(512, 512)","(448, 512)","(512,)","(448,)","[0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[4]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[query]/linear_0
|
51 |
+
49,16,MHSA,nncf_module.swin.encoder.layers.2.blocks.4.attention.self.key,"(512, 512)","(448, 512)","(512,)","(448,)","[0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[4]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[key]/linear_0
|
52 |
+
50,16,MHSA,nncf_module.swin.encoder.layers.2.blocks.4.attention.self.value,"(512, 512)","(448, 512)","(512,)","(448,)","[0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[4]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[value]/linear_0
|
53 |
+
51,16,MHSA,nncf_module.swin.encoder.layers.2.blocks.4.attention.output.dense,"(512, 512)","(512, 448)","(512,)","(512,)","[0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[4]/SwinAttention[attention]/SwinSelfOutput[output]/NNCFLinear[dense]/linear_0
|
54 |
+
52,17,FF,nncf_module.swin.encoder.layers.2.blocks.4.intermediate.dense,"(2048, 512)","(1226, 512)","(2048,)","(1226,)",[1226 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[4]/SwinIntermediate[intermediate]/NNCFLinear[dense]/linear_0
|
55 |
+
53,17,FF,nncf_module.swin.encoder.layers.2.blocks.4.output.dense,"(512, 2048)","(512, 1226)","(512,)","(512,)",[1226 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[4]/SwinOutput[output]/NNCFLinear[dense]/linear_0
|
56 |
+
54,18,MHSA,nncf_module.swin.encoder.layers.2.blocks.5.attention.self.query,"(512, 512)","(160, 512)","(512,)","(160,)","[0, 1, 5, 13, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[5]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[query]/linear_0
|
57 |
+
55,18,MHSA,nncf_module.swin.encoder.layers.2.blocks.5.attention.self.key,"(512, 512)","(160, 512)","(512,)","(160,)","[0, 1, 5, 13, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[5]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[key]/linear_0
|
58 |
+
56,18,MHSA,nncf_module.swin.encoder.layers.2.blocks.5.attention.self.value,"(512, 512)","(160, 512)","(512,)","(160,)","[0, 1, 5, 13, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[5]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[value]/linear_0
|
59 |
+
57,18,MHSA,nncf_module.swin.encoder.layers.2.blocks.5.attention.output.dense,"(512, 512)","(512, 160)","(512,)","(512,)","[0, 1, 5, 13, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[5]/SwinAttention[attention]/SwinSelfOutput[output]/NNCFLinear[dense]/linear_0
|
60 |
+
58,19,FF,nncf_module.swin.encoder.layers.2.blocks.5.intermediate.dense,"(2048, 512)","(1188, 512)","(2048,)","(1188,)",[1188 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[5]/SwinIntermediate[intermediate]/NNCFLinear[dense]/linear_0
|
61 |
+
59,19,FF,nncf_module.swin.encoder.layers.2.blocks.5.output.dense,"(512, 2048)","(512, 1188)","(512,)","(512,)",[1188 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[5]/SwinOutput[output]/NNCFLinear[dense]/linear_0
|
62 |
+
60,20,MHSA,nncf_module.swin.encoder.layers.2.blocks.6.attention.self.query,"(512, 512)","(352, 512)","(512,)","(352,)","[0, 2, 3, 6, 7, 8, 9, 12, 13, 14, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[6]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[query]/linear_0
|
63 |
+
61,20,MHSA,nncf_module.swin.encoder.layers.2.blocks.6.attention.self.key,"(512, 512)","(352, 512)","(512,)","(352,)","[0, 2, 3, 6, 7, 8, 9, 12, 13, 14, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[6]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[key]/linear_0
|
64 |
+
62,20,MHSA,nncf_module.swin.encoder.layers.2.blocks.6.attention.self.value,"(512, 512)","(352, 512)","(512,)","(352,)","[0, 2, 3, 6, 7, 8, 9, 12, 13, 14, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[6]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[value]/linear_0
|
65 |
+
63,20,MHSA,nncf_module.swin.encoder.layers.2.blocks.6.attention.output.dense,"(512, 512)","(512, 352)","(512,)","(512,)","[0, 2, 3, 6, 7, 8, 9, 12, 13, 14, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[6]/SwinAttention[attention]/SwinSelfOutput[output]/NNCFLinear[dense]/linear_0
|
66 |
+
64,21,FF,nncf_module.swin.encoder.layers.2.blocks.6.intermediate.dense,"(2048, 512)","(1211, 512)","(2048,)","(1211,)",[1211 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[6]/SwinIntermediate[intermediate]/NNCFLinear[dense]/linear_0
|
67 |
+
65,21,FF,nncf_module.swin.encoder.layers.2.blocks.6.output.dense,"(512, 2048)","(512, 1211)","(512,)","(512,)",[1211 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[6]/SwinOutput[output]/NNCFLinear[dense]/linear_0
|
68 |
+
66,22,MHSA,nncf_module.swin.encoder.layers.2.blocks.7.attention.self.query,"(512, 512)","(320, 512)","(512,)","(320,)","[0, 1, 2, 4, 5, 6, 11, 13, 14, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[7]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[query]/linear_0
|
69 |
+
67,22,MHSA,nncf_module.swin.encoder.layers.2.blocks.7.attention.self.key,"(512, 512)","(320, 512)","(512,)","(320,)","[0, 1, 2, 4, 5, 6, 11, 13, 14, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[7]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[key]/linear_0
|
70 |
+
68,22,MHSA,nncf_module.swin.encoder.layers.2.blocks.7.attention.self.value,"(512, 512)","(320, 512)","(512,)","(320,)","[0, 1, 2, 4, 5, 6, 11, 13, 14, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[7]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[value]/linear_0
|
71 |
+
69,22,MHSA,nncf_module.swin.encoder.layers.2.blocks.7.attention.output.dense,"(512, 512)","(512, 320)","(512,)","(512,)","[0, 1, 2, 4, 5, 6, 11, 13, 14, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[7]/SwinAttention[attention]/SwinSelfOutput[output]/NNCFLinear[dense]/linear_0
|
72 |
+
70,23,FF,nncf_module.swin.encoder.layers.2.blocks.7.intermediate.dense,"(2048, 512)","(1248, 512)","(2048,)","(1248,)",[1248 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[7]/SwinIntermediate[intermediate]/NNCFLinear[dense]/linear_0
|
73 |
+
71,23,FF,nncf_module.swin.encoder.layers.2.blocks.7.output.dense,"(512, 2048)","(512, 1248)","(512,)","(512,)",[1248 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[7]/SwinOutput[output]/NNCFLinear[dense]/linear_0
|
74 |
+
72,24,MHSA,nncf_module.swin.encoder.layers.2.blocks.8.attention.self.query,"(512, 512)","(288, 512)","(512,)","(288,)","[3, 4, 5, 6, 8, 9, 10, 12, 13]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[8]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[query]/linear_0
|
75 |
+
73,24,MHSA,nncf_module.swin.encoder.layers.2.blocks.8.attention.self.key,"(512, 512)","(288, 512)","(512,)","(288,)","[3, 4, 5, 6, 8, 9, 10, 12, 13]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[8]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[key]/linear_0
|
76 |
+
74,24,MHSA,nncf_module.swin.encoder.layers.2.blocks.8.attention.self.value,"(512, 512)","(288, 512)","(512,)","(288,)","[3, 4, 5, 6, 8, 9, 10, 12, 13]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[8]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[value]/linear_0
|
77 |
+
75,24,MHSA,nncf_module.swin.encoder.layers.2.blocks.8.attention.output.dense,"(512, 512)","(512, 288)","(512,)","(512,)","[3, 4, 5, 6, 8, 9, 10, 12, 13]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[8]/SwinAttention[attention]/SwinSelfOutput[output]/NNCFLinear[dense]/linear_0
|
78 |
+
76,25,FF,nncf_module.swin.encoder.layers.2.blocks.8.intermediate.dense,"(2048, 512)","(1222, 512)","(2048,)","(1222,)",[1222 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[8]/SwinIntermediate[intermediate]/NNCFLinear[dense]/linear_0
|
79 |
+
77,25,FF,nncf_module.swin.encoder.layers.2.blocks.8.output.dense,"(512, 2048)","(512, 1222)","(512,)","(512,)",[1222 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[8]/SwinOutput[output]/NNCFLinear[dense]/linear_0
|
80 |
+
78,26,MHSA,nncf_module.swin.encoder.layers.2.blocks.9.attention.self.query,"(512, 512)","(320, 512)","(512,)","(320,)","[0, 1, 2, 3, 4, 6, 7, 8, 9, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[9]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[query]/linear_0
|
81 |
+
79,26,MHSA,nncf_module.swin.encoder.layers.2.blocks.9.attention.self.key,"(512, 512)","(320, 512)","(512,)","(320,)","[0, 1, 2, 3, 4, 6, 7, 8, 9, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[9]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[key]/linear_0
|
82 |
+
80,26,MHSA,nncf_module.swin.encoder.layers.2.blocks.9.attention.self.value,"(512, 512)","(320, 512)","(512,)","(320,)","[0, 1, 2, 3, 4, 6, 7, 8, 9, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[9]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[value]/linear_0
|
83 |
+
81,26,MHSA,nncf_module.swin.encoder.layers.2.blocks.9.attention.output.dense,"(512, 512)","(512, 320)","(512,)","(512,)","[0, 1, 2, 3, 4, 6, 7, 8, 9, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[9]/SwinAttention[attention]/SwinSelfOutput[output]/NNCFLinear[dense]/linear_0
|
84 |
+
82,27,FF,nncf_module.swin.encoder.layers.2.blocks.9.intermediate.dense,"(2048, 512)","(1241, 512)","(2048,)","(1241,)",[1241 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[9]/SwinIntermediate[intermediate]/NNCFLinear[dense]/linear_0
|
85 |
+
83,27,FF,nncf_module.swin.encoder.layers.2.blocks.9.output.dense,"(512, 2048)","(512, 1241)","(512,)","(512,)",[1241 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[9]/SwinOutput[output]/NNCFLinear[dense]/linear_0
|
86 |
+
84,28,MHSA,nncf_module.swin.encoder.layers.2.blocks.10.attention.self.query,"(512, 512)","(448, 512)","(512,)","(448,)","[0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[10]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[query]/linear_0
|
87 |
+
85,28,MHSA,nncf_module.swin.encoder.layers.2.blocks.10.attention.self.key,"(512, 512)","(448, 512)","(512,)","(448,)","[0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[10]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[key]/linear_0
|
88 |
+
86,28,MHSA,nncf_module.swin.encoder.layers.2.blocks.10.attention.self.value,"(512, 512)","(448, 512)","(512,)","(448,)","[0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[10]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[value]/linear_0
|
89 |
+
87,28,MHSA,nncf_module.swin.encoder.layers.2.blocks.10.attention.output.dense,"(512, 512)","(512, 448)","(512,)","(512,)","[0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[10]/SwinAttention[attention]/SwinSelfOutput[output]/NNCFLinear[dense]/linear_0
|
90 |
+
88,29,FF,nncf_module.swin.encoder.layers.2.blocks.10.intermediate.dense,"(2048, 512)","(1236, 512)","(2048,)","(1236,)",[1236 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[10]/SwinIntermediate[intermediate]/NNCFLinear[dense]/linear_0
|
91 |
+
89,29,FF,nncf_module.swin.encoder.layers.2.blocks.10.output.dense,"(512, 2048)","(512, 1236)","(512,)","(512,)",[1236 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[10]/SwinOutput[output]/NNCFLinear[dense]/linear_0
|
92 |
+
90,30,MHSA,nncf_module.swin.encoder.layers.2.blocks.11.attention.self.query,"(512, 512)","(288, 512)","(512,)","(288,)","[2, 3, 6, 7, 8, 9, 11, 12, 13]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[11]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[query]/linear_0
|
93 |
+
91,30,MHSA,nncf_module.swin.encoder.layers.2.blocks.11.attention.self.key,"(512, 512)","(288, 512)","(512,)","(288,)","[2, 3, 6, 7, 8, 9, 11, 12, 13]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[11]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[key]/linear_0
|
94 |
+
92,30,MHSA,nncf_module.swin.encoder.layers.2.blocks.11.attention.self.value,"(512, 512)","(288, 512)","(512,)","(288,)","[2, 3, 6, 7, 8, 9, 11, 12, 13]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[11]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[value]/linear_0
|
95 |
+
93,30,MHSA,nncf_module.swin.encoder.layers.2.blocks.11.attention.output.dense,"(512, 512)","(512, 288)","(512,)","(512,)","[2, 3, 6, 7, 8, 9, 11, 12, 13]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[11]/SwinAttention[attention]/SwinSelfOutput[output]/NNCFLinear[dense]/linear_0
|
96 |
+
94,31,FF,nncf_module.swin.encoder.layers.2.blocks.11.intermediate.dense,"(2048, 512)","(1215, 512)","(2048,)","(1215,)",[1215 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[11]/SwinIntermediate[intermediate]/NNCFLinear[dense]/linear_0
|
97 |
+
95,31,FF,nncf_module.swin.encoder.layers.2.blocks.11.output.dense,"(512, 2048)","(512, 1215)","(512,)","(512,)",[1215 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[11]/SwinOutput[output]/NNCFLinear[dense]/linear_0
|
98 |
+
96,32,MHSA,nncf_module.swin.encoder.layers.2.blocks.12.attention.self.query,"(512, 512)","(352, 512)","(512,)","(352,)","[1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[12]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[query]/linear_0
|
99 |
+
97,32,MHSA,nncf_module.swin.encoder.layers.2.blocks.12.attention.self.key,"(512, 512)","(352, 512)","(512,)","(352,)","[1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[12]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[key]/linear_0
|
100 |
+
98,32,MHSA,nncf_module.swin.encoder.layers.2.blocks.12.attention.self.value,"(512, 512)","(352, 512)","(512,)","(352,)","[1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[12]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[value]/linear_0
|
101 |
+
99,32,MHSA,nncf_module.swin.encoder.layers.2.blocks.12.attention.output.dense,"(512, 512)","(512, 352)","(512,)","(512,)","[1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[12]/SwinAttention[attention]/SwinSelfOutput[output]/NNCFLinear[dense]/linear_0
|
102 |
+
100,33,FF,nncf_module.swin.encoder.layers.2.blocks.12.intermediate.dense,"(2048, 512)","(1250, 512)","(2048,)","(1250,)",[1250 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[12]/SwinIntermediate[intermediate]/NNCFLinear[dense]/linear_0
|
103 |
+
101,33,FF,nncf_module.swin.encoder.layers.2.blocks.12.output.dense,"(512, 2048)","(512, 1250)","(512,)","(512,)",[1250 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[12]/SwinOutput[output]/NNCFLinear[dense]/linear_0
|
104 |
+
102,34,MHSA,nncf_module.swin.encoder.layers.2.blocks.13.attention.self.query,"(512, 512)","(224, 512)","(512,)","(224,)","[2, 3, 4, 6, 8, 11, 12]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[13]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[query]/linear_0
|
105 |
+
103,34,MHSA,nncf_module.swin.encoder.layers.2.blocks.13.attention.self.key,"(512, 512)","(224, 512)","(512,)","(224,)","[2, 3, 4, 6, 8, 11, 12]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[13]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[key]/linear_0
|
106 |
+
104,34,MHSA,nncf_module.swin.encoder.layers.2.blocks.13.attention.self.value,"(512, 512)","(224, 512)","(512,)","(224,)","[2, 3, 4, 6, 8, 11, 12]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[13]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[value]/linear_0
|
107 |
+
105,34,MHSA,nncf_module.swin.encoder.layers.2.blocks.13.attention.output.dense,"(512, 512)","(512, 224)","(512,)","(512,)","[2, 3, 4, 6, 8, 11, 12]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[13]/SwinAttention[attention]/SwinSelfOutput[output]/NNCFLinear[dense]/linear_0
|
108 |
+
106,35,FF,nncf_module.swin.encoder.layers.2.blocks.13.intermediate.dense,"(2048, 512)","(1224, 512)","(2048,)","(1224,)",[1224 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[13]/SwinIntermediate[intermediate]/NNCFLinear[dense]/linear_0
|
109 |
+
107,35,FF,nncf_module.swin.encoder.layers.2.blocks.13.output.dense,"(512, 2048)","(512, 1224)","(512,)","(512,)",[1224 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[13]/SwinOutput[output]/NNCFLinear[dense]/linear_0
|
110 |
+
108,36,MHSA,nncf_module.swin.encoder.layers.2.blocks.14.attention.self.query,"(512, 512)","(352, 512)","(512,)","(352,)","[0, 2, 3, 4, 5, 9, 10, 12, 13, 14, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[14]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[query]/linear_0
|
111 |
+
109,36,MHSA,nncf_module.swin.encoder.layers.2.blocks.14.attention.self.key,"(512, 512)","(352, 512)","(512,)","(352,)","[0, 2, 3, 4, 5, 9, 10, 12, 13, 14, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[14]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[key]/linear_0
|
112 |
+
110,36,MHSA,nncf_module.swin.encoder.layers.2.blocks.14.attention.self.value,"(512, 512)","(352, 512)","(512,)","(352,)","[0, 2, 3, 4, 5, 9, 10, 12, 13, 14, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[14]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[value]/linear_0
|
113 |
+
111,36,MHSA,nncf_module.swin.encoder.layers.2.blocks.14.attention.output.dense,"(512, 512)","(512, 352)","(512,)","(512,)","[0, 2, 3, 4, 5, 9, 10, 12, 13, 14, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[14]/SwinAttention[attention]/SwinSelfOutput[output]/NNCFLinear[dense]/linear_0
|
114 |
+
112,37,FF,nncf_module.swin.encoder.layers.2.blocks.14.intermediate.dense,"(2048, 512)","(1195, 512)","(2048,)","(1195,)",[1195 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[14]/SwinIntermediate[intermediate]/NNCFLinear[dense]/linear_0
|
115 |
+
113,37,FF,nncf_module.swin.encoder.layers.2.blocks.14.output.dense,"(512, 2048)","(512, 1195)","(512,)","(512,)",[1195 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[14]/SwinOutput[output]/NNCFLinear[dense]/linear_0
|
116 |
+
114,38,MHSA,nncf_module.swin.encoder.layers.2.blocks.15.attention.self.query,"(512, 512)","(288, 512)","(512,)","(288,)","[1, 2, 3, 4, 6, 9, 10, 13, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[15]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[query]/linear_0
|
117 |
+
115,38,MHSA,nncf_module.swin.encoder.layers.2.blocks.15.attention.self.key,"(512, 512)","(288, 512)","(512,)","(288,)","[1, 2, 3, 4, 6, 9, 10, 13, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[15]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[key]/linear_0
|
118 |
+
116,38,MHSA,nncf_module.swin.encoder.layers.2.blocks.15.attention.self.value,"(512, 512)","(288, 512)","(512,)","(288,)","[1, 2, 3, 4, 6, 9, 10, 13, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[15]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[value]/linear_0
|
119 |
+
117,38,MHSA,nncf_module.swin.encoder.layers.2.blocks.15.attention.output.dense,"(512, 512)","(512, 288)","(512,)","(512,)","[1, 2, 3, 4, 6, 9, 10, 13, 15]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[15]/SwinAttention[attention]/SwinSelfOutput[output]/NNCFLinear[dense]/linear_0
|
120 |
+
118,39,FF,nncf_module.swin.encoder.layers.2.blocks.15.intermediate.dense,"(2048, 512)","(1093, 512)","(2048,)","(1093,)",[1093 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[15]/SwinIntermediate[intermediate]/NNCFLinear[dense]/linear_0
|
121 |
+
119,39,FF,nncf_module.swin.encoder.layers.2.blocks.15.output.dense,"(512, 2048)","(512, 1093)","(512,)","(512,)",[1093 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[15]/SwinOutput[output]/NNCFLinear[dense]/linear_0
|
122 |
+
120,40,MHSA,nncf_module.swin.encoder.layers.2.blocks.16.attention.self.query,"(512, 512)","(256, 512)","(512,)","(256,)","[0, 2, 3, 6, 7, 8, 9, 14]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[16]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[query]/linear_0
|
123 |
+
121,40,MHSA,nncf_module.swin.encoder.layers.2.blocks.16.attention.self.key,"(512, 512)","(256, 512)","(512,)","(256,)","[0, 2, 3, 6, 7, 8, 9, 14]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[16]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[key]/linear_0
|
124 |
+
122,40,MHSA,nncf_module.swin.encoder.layers.2.blocks.16.attention.self.value,"(512, 512)","(256, 512)","(512,)","(256,)","[0, 2, 3, 6, 7, 8, 9, 14]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[16]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[value]/linear_0
|
125 |
+
123,40,MHSA,nncf_module.swin.encoder.layers.2.blocks.16.attention.output.dense,"(512, 512)","(512, 256)","(512,)","(512,)","[0, 2, 3, 6, 7, 8, 9, 14]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[16]/SwinAttention[attention]/SwinSelfOutput[output]/NNCFLinear[dense]/linear_0
|
126 |
+
124,41,FF,nncf_module.swin.encoder.layers.2.blocks.16.intermediate.dense,"(2048, 512)","(1026, 512)","(2048,)","(1026,)",[1026 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[16]/SwinIntermediate[intermediate]/NNCFLinear[dense]/linear_0
|
127 |
+
125,41,FF,nncf_module.swin.encoder.layers.2.blocks.16.output.dense,"(512, 2048)","(512, 1026)","(512,)","(512,)",[1026 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[16]/SwinOutput[output]/NNCFLinear[dense]/linear_0
|
128 |
+
126,42,MHSA,nncf_module.swin.encoder.layers.2.blocks.17.attention.self.query,"(512, 512)","(224, 512)","(512,)","(224,)","[2, 3, 4, 5, 10, 11, 12]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[17]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[query]/linear_0
|
129 |
+
127,42,MHSA,nncf_module.swin.encoder.layers.2.blocks.17.attention.self.key,"(512, 512)","(224, 512)","(512,)","(224,)","[2, 3, 4, 5, 10, 11, 12]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[17]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[key]/linear_0
|
130 |
+
128,42,MHSA,nncf_module.swin.encoder.layers.2.blocks.17.attention.self.value,"(512, 512)","(224, 512)","(512,)","(224,)","[2, 3, 4, 5, 10, 11, 12]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[17]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[value]/linear_0
|
131 |
+
129,42,MHSA,nncf_module.swin.encoder.layers.2.blocks.17.attention.output.dense,"(512, 512)","(512, 224)","(512,)","(512,)","[2, 3, 4, 5, 10, 11, 12]",SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[17]/SwinAttention[attention]/SwinSelfOutput[output]/NNCFLinear[dense]/linear_0
|
132 |
+
130,43,FF,nncf_module.swin.encoder.layers.2.blocks.17.intermediate.dense,"(2048, 512)","(1078, 512)","(2048,)","(1078,)",[1078 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[17]/SwinIntermediate[intermediate]/NNCFLinear[dense]/linear_0
|
133 |
+
131,43,FF,nncf_module.swin.encoder.layers.2.blocks.17.output.dense,"(512, 2048)","(512, 1078)","(512,)","(512,)",[1078 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[2]/ModuleList[blocks]/SwinLayer[17]/SwinOutput[output]/NNCFLinear[dense]/linear_0
|
134 |
+
132,44,MHSA,nncf_module.swin.encoder.layers.3.blocks.0.attention.self.query,"(1024, 1024)","(1024, 1024)","(1024,)","(1024,)",[32 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[3]/ModuleList[blocks]/SwinLayer[0]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[query]/linear_0
|
135 |
+
133,44,MHSA,nncf_module.swin.encoder.layers.3.blocks.0.attention.self.key,"(1024, 1024)","(1024, 1024)","(1024,)","(1024,)",[32 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[3]/ModuleList[blocks]/SwinLayer[0]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[key]/linear_0
|
136 |
+
134,44,MHSA,nncf_module.swin.encoder.layers.3.blocks.0.attention.self.value,"(1024, 1024)","(1024, 1024)","(1024,)","(1024,)",[32 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[3]/ModuleList[blocks]/SwinLayer[0]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[value]/linear_0
|
137 |
+
135,44,MHSA,nncf_module.swin.encoder.layers.3.blocks.0.attention.output.dense,"(1024, 1024)","(1024, 1024)","(1024,)","(1024,)",[32 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[3]/ModuleList[blocks]/SwinLayer[0]/SwinAttention[attention]/SwinSelfOutput[output]/NNCFLinear[dense]/linear_0
|
138 |
+
136,45,FF,nncf_module.swin.encoder.layers.3.blocks.0.intermediate.dense,"(4096, 1024)","(2153, 1024)","(4096,)","(2153,)",[2153 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[3]/ModuleList[blocks]/SwinLayer[0]/SwinIntermediate[intermediate]/NNCFLinear[dense]/linear_0
|
139 |
+
137,45,FF,nncf_module.swin.encoder.layers.3.blocks.0.output.dense,"(1024, 4096)","(1024, 2153)","(1024,)","(1024,)",[2153 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[3]/ModuleList[blocks]/SwinLayer[0]/SwinOutput[output]/NNCFLinear[dense]/linear_0
|
140 |
+
138,46,MHSA,nncf_module.swin.encoder.layers.3.blocks.1.attention.self.query,"(1024, 1024)","(1024, 1024)","(1024,)","(1024,)",[32 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[3]/ModuleList[blocks]/SwinLayer[1]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[query]/linear_0
|
141 |
+
139,46,MHSA,nncf_module.swin.encoder.layers.3.blocks.1.attention.self.key,"(1024, 1024)","(1024, 1024)","(1024,)","(1024,)",[32 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[3]/ModuleList[blocks]/SwinLayer[1]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[key]/linear_0
|
142 |
+
140,46,MHSA,nncf_module.swin.encoder.layers.3.blocks.1.attention.self.value,"(1024, 1024)","(1024, 1024)","(1024,)","(1024,)",[32 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[3]/ModuleList[blocks]/SwinLayer[1]/SwinAttention[attention]/SwinSelfAttention[self]/NNCFLinear[value]/linear_0
|
143 |
+
141,46,MHSA,nncf_module.swin.encoder.layers.3.blocks.1.attention.output.dense,"(1024, 1024)","(1024, 1024)","(1024,)","(1024,)",[32 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[3]/ModuleList[blocks]/SwinLayer[1]/SwinAttention[attention]/SwinSelfOutput[output]/NNCFLinear[dense]/linear_0
|
144 |
+
142,47,FF,nncf_module.swin.encoder.layers.3.blocks.1.intermediate.dense,"(4096, 1024)","(1925, 1024)","(4096,)","(1925,)",[1925 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[3]/ModuleList[blocks]/SwinLayer[1]/SwinIntermediate[intermediate]/NNCFLinear[dense]/linear_0
|
145 |
+
143,47,FF,nncf_module.swin.encoder.layers.3.blocks.1.output.dense,"(1024, 4096)","(1024, 1925)","(1024,)","(1024,)",[1925 items],SwinForImageClassification/SwinModel[swin]/SwinEncoder[encoder]/ModuleList[layers]/SwinStage[3]/ModuleList[blocks]/SwinLayer[1]/SwinOutput[output]/NNCFLinear[dense]/linear_0
|
trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8a807963eda0954f61bcb8b8b6ae91adba3f21a701e7907725f28ab2cc1ea57
|
3 |
+
size 3771
|