yujiepan's picture
Update README.md
9045130 verified
metadata
library_name: diffusers

yujiepan/FLUX.1-dev-tiny-random

This pipeline is intended for debugging. It is adapted from black-forest-labs/FLUX.1-dev with smaller size and randomly initialized parameters.

Usage

import torch
from diffusers import FluxPipeline

pipe = FluxPipeline.from_pretrained("yujiepan/FLUX.1-dev-tiny-random", torch_dtype=torch.bfloat16)
pipe.enable_model_cpu_offload() #save some VRAM by offloading the model to CPU. Remove this if you have enough GPU power
prompt = "A cat holding a sign that says hello world"
image = pipe(
    prompt,
    height=1024,
    width=1024,
    guidance_scale=3.5,
    num_inference_steps=50,
    max_sequence_length=512,
    generator=torch.Generator("cpu").manual_seed(0)
).images[0]
# image.save("flux-dev.png")

Codes

import importlib

import torch
import transformers

import diffusers
import rich


def get_original_model_configs(
    pipeline_cls: type[diffusers.FluxPipeline],
    pipeline_id: str
):
    pipeline_config: dict[str, list[str]] = \
        pipeline_cls.load_config(pipeline_id)
    model_configs = {}

    for subfolder, import_strings in pipeline_config.items():
        if subfolder.startswith("_"):
            continue
        module = importlib.import_module(".".join(import_strings[:-1]))
        cls = getattr(module, import_strings[-1])
        if issubclass(cls, transformers.PreTrainedModel):
            config_class: transformers.PretrainedConfig = cls.config_class
            config = config_class.from_pretrained(
                pipeline_id, subfolder=subfolder)
            model_configs[subfolder] = config
        elif issubclass(cls, diffusers.ModelMixin) and issubclass(cls, diffusers.ConfigMixin):
            config = cls.load_config(pipeline_id, subfolder=subfolder)
            model_configs[subfolder] = config
        elif subfolder in ['scheduler', 'tokenizer', 'tokenizer_2', 'tokenizer_3']:
            pass
        else:
            raise NotImplementedError(f"unknown {subfolder}: {import_strings}")

    return model_configs


def load_pipeline(pipeline_cls: type[diffusers.DiffusionPipeline], pipeline_id: str, model_configs: dict[str, dict]):
    pipeline_config: dict[str, list[str]
                          ] = pipeline_cls.load_config(pipeline_id)
    components = {}
    for subfolder, import_strings in pipeline_config.items():
        if subfolder.startswith("_"):
            continue
        module = importlib.import_module(".".join(import_strings[:-1]))
        cls = getattr(module, import_strings[-1])
        print(f"Loading:", ".".join(import_strings))
        if issubclass(cls, transformers.PreTrainedModel):
            config = model_configs[subfolder]
            component = cls(config)
        elif issubclass(cls, transformers.PreTrainedTokenizerBase):
            component = cls.from_pretrained(pipeline_id, subfolder=subfolder)
        elif issubclass(cls, diffusers.ModelMixin) and issubclass(cls, diffusers.ConfigMixin):
            config = model_configs[subfolder]
            component = cls.from_config(config)
        elif issubclass(cls, diffusers.SchedulerMixin) and issubclass(cls, diffusers.ConfigMixin):
            component = cls.from_pretrained(pipeline_id, subfolder=subfolder)
        else:
            raise (f"unknown {subfolder}: {import_strings}")
        components[subfolder] = component
        if 'transformer' in component.__class__.__name__.lower():
            print(component)
    pipeline = pipeline_cls(**components)
    return pipeline


def get_pipeline():
    torch.manual_seed(42)
    pipeline_id = "black-forest-labs/FLUX.1-dev"
    pipeline_cls = diffusers.FluxPipeline
    model_configs = get_original_model_configs(pipeline_cls, pipeline_id)

    HIDDEN_SIZE = 8
    model_configs["text_encoder"].hidden_size = HIDDEN_SIZE
    model_configs["text_encoder"].intermediate_size = HIDDEN_SIZE * 2
    model_configs["text_encoder"].num_attention_heads = 2
    model_configs["text_encoder"].num_hidden_layers = 2
    model_configs["text_encoder"].projection_dim = HIDDEN_SIZE

    model_configs["text_encoder_2"].d_model = HIDDEN_SIZE
    model_configs["text_encoder_2"].d_ff = HIDDEN_SIZE * 2
    model_configs["text_encoder_2"].d_kv = HIDDEN_SIZE // 2
    model_configs["text_encoder_2"].num_heads = 2
    model_configs["text_encoder_2"].num_layers = 2

    model_configs["transformer"]["num_layers"] = 2
    model_configs["transformer"]["num_single_layers"] = 4
    model_configs["transformer"]["num_attention_heads"] = 2
    model_configs["transformer"]["attention_head_dim"] = HIDDEN_SIZE
    model_configs["transformer"]["pooled_projection_dim"] = HIDDEN_SIZE
    model_configs["transformer"]["joint_attention_dim"] = HIDDEN_SIZE
    model_configs["transformer"]["axes_dims_rope"] = (4, 2, 2)
    # model_configs["transformer"]["caption_projection_dim"] = HIDDEN_SIZE

    model_configs["vae"]["layers_per_block"] = 1
    model_configs["vae"]["block_out_channels"] = [HIDDEN_SIZE] * 4
    model_configs["vae"]["norm_num_groups"] = 2
    model_configs["vae"]["latent_channels"] = 16

    pipeline = load_pipeline(pipeline_cls, pipeline_id, model_configs)
    return pipeline


pipe = get_pipeline()
pipe = pipe.to(torch.bfloat16)

from pathlib import Path
save_folder = '/tmp/yujiepan/FLUX.1-dev-tiny-random'
Path(save_folder).mkdir(parents=True, exist_ok=True)
pipe.save_pretrained(save_folder)

pipe = diffusers.FluxPipeline.from_pretrained(save_folder, torch_dtype=torch.bfloat16)
pipe.enable_model_cpu_offload()
prompt = "A cat holding a sign that says hello world"
image = pipe(
    prompt,
    height=1024,
    width=1024,
    guidance_scale=3.5,
    num_inference_steps=50,
    max_sequence_length=512,
    generator=torch.Generator("cpu").manual_seed(0)
).images[0]

configs = get_original_model_configs(diffusers.FluxPipeline, save_folder)
rich.print(configs)

pipe.push_to_hub(save_folder.removeprefix('/tmp/'))