yujia23 commited on
Commit
e85d3f2
1 Parent(s): 08925f3

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. README.md +162 -0
  2. adapter_config.json +34 -0
  3. adapter_model.bin +3 -0
  4. added_tokens.json +5 -0
  5. checkpoint-1130/README.md +202 -0
  6. checkpoint-1130/adapter_config.json +34 -0
  7. checkpoint-1130/adapter_model.safetensors +3 -0
  8. checkpoint-1130/added_tokens.json +5 -0
  9. checkpoint-1130/merges.txt +0 -0
  10. checkpoint-1130/optimizer.pt +3 -0
  11. checkpoint-1130/rng_state_0.pth +3 -0
  12. checkpoint-1130/rng_state_1.pth +3 -0
  13. checkpoint-1130/scheduler.pt +3 -0
  14. checkpoint-1130/special_tokens_map.json +20 -0
  15. checkpoint-1130/tokenizer.json +0 -0
  16. checkpoint-1130/tokenizer_config.json +43 -0
  17. checkpoint-1130/trainer_state.json +0 -0
  18. checkpoint-1130/training_args.bin +3 -0
  19. checkpoint-1130/vocab.json +0 -0
  20. checkpoint-1695/README.md +202 -0
  21. checkpoint-1695/adapter_config.json +34 -0
  22. checkpoint-1695/adapter_model.safetensors +3 -0
  23. checkpoint-1695/added_tokens.json +5 -0
  24. checkpoint-1695/merges.txt +0 -0
  25. checkpoint-1695/optimizer.pt +3 -0
  26. checkpoint-1695/rng_state_0.pth +3 -0
  27. checkpoint-1695/rng_state_1.pth +3 -0
  28. checkpoint-1695/scheduler.pt +3 -0
  29. checkpoint-1695/special_tokens_map.json +20 -0
  30. checkpoint-1695/tokenizer.json +0 -0
  31. checkpoint-1695/tokenizer_config.json +43 -0
  32. checkpoint-1695/trainer_state.json +0 -0
  33. checkpoint-1695/training_args.bin +3 -0
  34. checkpoint-1695/vocab.json +0 -0
  35. checkpoint-565/README.md +202 -0
  36. checkpoint-565/adapter_config.json +34 -0
  37. checkpoint-565/adapter_model.safetensors +3 -0
  38. checkpoint-565/added_tokens.json +5 -0
  39. checkpoint-565/merges.txt +0 -0
  40. checkpoint-565/optimizer.pt +3 -0
  41. checkpoint-565/rng_state_0.pth +3 -0
  42. checkpoint-565/rng_state_1.pth +3 -0
  43. checkpoint-565/scheduler.pt +3 -0
  44. checkpoint-565/special_tokens_map.json +20 -0
  45. checkpoint-565/tokenizer.json +0 -0
  46. checkpoint-565/tokenizer_config.json +43 -0
  47. checkpoint-565/trainer_state.json +4008 -0
  48. checkpoint-565/training_args.bin +3 -0
  49. checkpoint-565/vocab.json +0 -0
  50. config.json +42 -0
README.md ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ library_name: peft
4
+ tags:
5
+ - generated_from_trainer
6
+ base_model: Qwen/Qwen1.5-7B
7
+ model-index:
8
+ - name: home/yujia/home/CN_Hateful/trained_models/qwen/CN/toxi/3e-4/
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.0`
19
+ ```yaml
20
+ # base_model: Qwen/Qwen-7B
21
+ base_model: Qwen/Qwen1.5-7B
22
+ model_type: AutoModelForCausalLM
23
+ tokenizer_type: AutoTokenizer
24
+
25
+ trust_remote_code: true
26
+
27
+ load_in_8bit: true
28
+ load_in_4bit: false
29
+ strict: false
30
+
31
+ datasets:
32
+ # - path: mhenrichsen/alpaca_2k_test
33
+ - path: /home/yujia/home/CN_Hateful/train_toxiCN_cn.json
34
+ # - path: /home/yujia/home/CN_Hateful/train_toxiCN.json
35
+ # - path: /home/yujia/home/CN_Hateful/train.json
36
+ # - path: /home/yujia/home/CN_Hateful/train_cn.json
37
+ ds_type: json
38
+ type: alpaca
39
+ dataset_prepared_path:
40
+ val_set_size: 0.05
41
+ output_dir: /home/yujia/home/CN_Hateful/trained_models/qwen/CN/toxi/3e-4/
42
+ # output_dir: /home/yujia/home/CN_Hateful/trained_models/qwen/toxi/1e-5/
43
+ # output_dir: /home/yujia/home/CN_Hateful/trained_models/qwen/cold/3e-4/
44
+ # output_dir: /home/yujia/home/CN_Hateful/trained_models/qwen/CN/cold/3e-4/
45
+
46
+ sequence_len: 256 # supports up to 8192
47
+ sample_packing: false
48
+ pad_to_sequence_len:
49
+
50
+ adapter: lora
51
+ lora_model_dir:
52
+ lora_r: 32
53
+ lora_alpha: 16
54
+ lora_dropout: 0.05
55
+ lora_target_linear: true
56
+ lora_fan_in_fan_out:
57
+
58
+ wandb_project:
59
+ wandb_entity:
60
+ wandb_watch:
61
+ wandb_name:
62
+ wandb_log_model:
63
+
64
+ gradient_accumulation_steps: 4
65
+ micro_batch_size: 2
66
+ num_epochs: 3
67
+ optimizer: adamw_bnb_8bit
68
+ lr_scheduler: cosine
69
+ learning_rate: 0.0003
70
+
71
+ train_on_inputs: false
72
+ group_by_length: false
73
+ bf16: auto
74
+ fp16:
75
+ tf32: false
76
+
77
+ gradient_checkpointing: false
78
+ early_stopping_patience:
79
+ resume_from_checkpoint:
80
+ local_rank:
81
+ logging_steps: 1
82
+ xformers_attention:
83
+ flash_attention:
84
+
85
+ warmup_steps: 10
86
+ evals_per_epoch: 4
87
+ eval_table_size:
88
+ eval_max_new_tokens: 20
89
+ saves_per_epoch: 1
90
+ debug:
91
+ deepspeed:
92
+ weight_decay: 0.0
93
+ fsdp:
94
+ fsdp_config:
95
+ special_tokens:
96
+
97
+ ```
98
+
99
+ </details><br>
100
+
101
+ # home/yujia/home/CN_Hateful/trained_models/qwen/CN/toxi/3e-4/
102
+
103
+ This model is a fine-tuned version of [Qwen/Qwen1.5-7B](https://huggingface.co/Qwen/Qwen1.5-7B) on the None dataset.
104
+ It achieves the following results on the evaluation set:
105
+ - Loss: 0.1261
106
+
107
+ ## Model description
108
+
109
+ More information needed
110
+
111
+ ## Intended uses & limitations
112
+
113
+ More information needed
114
+
115
+ ## Training and evaluation data
116
+
117
+ More information needed
118
+
119
+ ## Training procedure
120
+
121
+ ### Training hyperparameters
122
+
123
+ The following hyperparameters were used during training:
124
+ - learning_rate: 0.0003
125
+ - train_batch_size: 2
126
+ - eval_batch_size: 2
127
+ - seed: 42
128
+ - distributed_type: multi-GPU
129
+ - num_devices: 2
130
+ - gradient_accumulation_steps: 4
131
+ - total_train_batch_size: 16
132
+ - total_eval_batch_size: 4
133
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
134
+ - lr_scheduler_type: cosine
135
+ - lr_scheduler_warmup_steps: 10
136
+ - num_epochs: 3
137
+
138
+ ### Training results
139
+
140
+ | Training Loss | Epoch | Step | Validation Loss |
141
+ |:-------------:|:-----:|:----:|:---------------:|
142
+ | 3.3182 | 0.0 | 1 | 3.3363 |
143
+ | 0.0729 | 0.25 | 142 | 0.0904 |
144
+ | 0.0278 | 0.5 | 284 | 0.0789 |
145
+ | 0.1243 | 0.75 | 426 | 0.0724 |
146
+ | 0.0808 | 1.0 | 568 | 0.0936 |
147
+ | 0.0474 | 1.26 | 710 | 0.0780 |
148
+ | 0.0379 | 1.51 | 852 | 0.0863 |
149
+ | 0.0545 | 1.76 | 994 | 0.0793 |
150
+ | 0.0044 | 2.01 | 1136 | 0.0819 |
151
+ | 0.0021 | 2.26 | 1278 | 0.1127 |
152
+ | 0.0258 | 2.51 | 1420 | 0.1188 |
153
+ | 0.0429 | 2.76 | 1562 | 0.1261 |
154
+
155
+
156
+ ### Framework versions
157
+
158
+ - PEFT 0.10.0
159
+ - Transformers 4.40.0.dev0
160
+ - Pytorch 2.2.1+cu121
161
+ - Datasets 2.18.0
162
+ - Tokenizers 0.15.0
adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen1.5-7B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "gate_proj",
24
+ "o_proj",
25
+ "k_proj",
26
+ "up_proj",
27
+ "q_proj",
28
+ "v_proj",
29
+ "down_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aef7158daa5d9108cb659f1393978559110f3b4588cccde6ed3f6a3f69bedfcd
3
+ size 319977674
added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
checkpoint-1130/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: Qwen/Qwen1.5-7B
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
checkpoint-1130/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen1.5-7B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "gate_proj",
24
+ "o_proj",
25
+ "k_proj",
26
+ "up_proj",
27
+ "q_proj",
28
+ "v_proj",
29
+ "down_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-1130/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bcdef92b5e1768c97dc751d823a49f3ff028c17b57a6b0f24c4dd34d73e4b4e
3
+ size 319876032
checkpoint-1130/added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
checkpoint-1130/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1130/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb72d577d3875ede9c24ca94bafcf2c351caf09fdd9a8e9b5f9b35c605dab387
3
+ size 160736532
checkpoint-1130/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d4901585e9d75e84023ab72e4541020015ec7f9e3a44dd30228bed49938a1bc
3
+ size 14512
checkpoint-1130/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f52b8bbcff4bb55ccbed97b61cc7bef4a35d002ff92406d2e23baa476f0a8d21
3
+ size 14512
checkpoint-1130/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1cc9a05bf5a4bbe6fe7340f2e9ad63549fc9e80de9927a1ed1f66ee1aba1f923
3
+ size 1064
checkpoint-1130/special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
checkpoint-1130/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1130/tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ }
28
+ },
29
+ "additional_special_tokens": [
30
+ "<|im_start|>",
31
+ "<|im_end|>"
32
+ ],
33
+ "bos_token": null,
34
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
35
+ "clean_up_tokenization_spaces": false,
36
+ "eos_token": "<|endoftext|>",
37
+ "errors": "replace",
38
+ "model_max_length": 32768,
39
+ "pad_token": "<|endoftext|>",
40
+ "split_special_tokens": false,
41
+ "tokenizer_class": "Qwen2Tokenizer",
42
+ "unk_token": null
43
+ }
checkpoint-1130/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1130/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a5f5a3247deaa670d2445d5b7d23abcefeaaaa57a5c106b2b46878a93d61bd7
3
+ size 5752
checkpoint-1130/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1695/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: Qwen/Qwen1.5-7B
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
checkpoint-1695/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen1.5-7B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "gate_proj",
24
+ "o_proj",
25
+ "k_proj",
26
+ "up_proj",
27
+ "q_proj",
28
+ "v_proj",
29
+ "down_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-1695/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a877c10050889e1b1a947a788ad2949ff0336e099512250dedcf4d058e80e0f2
3
+ size 319876032
checkpoint-1695/added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
checkpoint-1695/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1695/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ab3966896b42f22461b73c18c6b0d45523d8312e142bdd8813c3452278a4a92
3
+ size 160736532
checkpoint-1695/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b55ad0de153a9394c92810ea3c27399952a305bd25451ed430aaf933a9a5e55c
3
+ size 14512
checkpoint-1695/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49270efca7489b54d9139d7c93770e62001cb2f4e09707c29e75b02ffb96afb7
3
+ size 14512
checkpoint-1695/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19b39b376ec98871d099c7b2aee99651ac2e7bbd7614f876a38716844ddc5623
3
+ size 1064
checkpoint-1695/special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
checkpoint-1695/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1695/tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ }
28
+ },
29
+ "additional_special_tokens": [
30
+ "<|im_start|>",
31
+ "<|im_end|>"
32
+ ],
33
+ "bos_token": null,
34
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
35
+ "clean_up_tokenization_spaces": false,
36
+ "eos_token": "<|endoftext|>",
37
+ "errors": "replace",
38
+ "model_max_length": 32768,
39
+ "pad_token": "<|endoftext|>",
40
+ "split_special_tokens": false,
41
+ "tokenizer_class": "Qwen2Tokenizer",
42
+ "unk_token": null
43
+ }
checkpoint-1695/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1695/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a5f5a3247deaa670d2445d5b7d23abcefeaaaa57a5c106b2b46878a93d61bd7
3
+ size 5752
checkpoint-1695/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-565/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: Qwen/Qwen1.5-7B
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
checkpoint-565/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen1.5-7B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "gate_proj",
24
+ "o_proj",
25
+ "k_proj",
26
+ "up_proj",
27
+ "q_proj",
28
+ "v_proj",
29
+ "down_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-565/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8dbe76104722f589177157b228791945abc1c461df0c7e50af2e26197e43b357
3
+ size 319876032
checkpoint-565/added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
checkpoint-565/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-565/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d1bf37742052e0cfa8df473c39b9edc853fb7e80522d0a008e2b30eec73a426
3
+ size 160736532
checkpoint-565/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49a681c33ffd6b61feaf98d05f702d37f2e4cea5ae28ff9fe027ab78959f6d28
3
+ size 14512
checkpoint-565/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:264fc0be051e80523f0b0faf9f50191b6a6d8a450a601ac7a6354029ee14de9c
3
+ size 14512
checkpoint-565/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:06aced6c9d871be45f926fa61df2b8be6e39ccda8b50eb332e17514a081169b9
3
+ size 1064
checkpoint-565/special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
checkpoint-565/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-565/tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ }
28
+ },
29
+ "additional_special_tokens": [
30
+ "<|im_start|>",
31
+ "<|im_end|>"
32
+ ],
33
+ "bos_token": null,
34
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
35
+ "clean_up_tokenization_spaces": false,
36
+ "eos_token": "<|endoftext|>",
37
+ "errors": "replace",
38
+ "model_max_length": 32768,
39
+ "pad_token": "<|endoftext|>",
40
+ "split_special_tokens": false,
41
+ "tokenizer_class": "Qwen2Tokenizer",
42
+ "unk_token": null
43
+ }
checkpoint-565/trainer_state.json ADDED
@@ -0,0 +1,4008 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9995577178239717,
5
+ "eval_steps": 142,
6
+ "global_step": 565,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "grad_norm": 4.588052749633789,
14
+ "learning_rate": 2.9999999999999997e-05,
15
+ "loss": 3.3182,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0,
20
+ "eval_loss": 3.3362529277801514,
21
+ "eval_runtime": 14.4233,
22
+ "eval_samples_per_second": 33.071,
23
+ "eval_steps_per_second": 8.32,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.0,
28
+ "grad_norm": 4.520856857299805,
29
+ "learning_rate": 5.9999999999999995e-05,
30
+ "loss": 3.2788,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.01,
35
+ "grad_norm": 4.619396209716797,
36
+ "learning_rate": 8.999999999999999e-05,
37
+ "loss": 3.3097,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.01,
42
+ "grad_norm": 4.416432857513428,
43
+ "learning_rate": 0.00011999999999999999,
44
+ "loss": 2.9162,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.01,
49
+ "grad_norm": 3.6663408279418945,
50
+ "learning_rate": 0.00015,
51
+ "loss": 2.0914,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.01,
56
+ "grad_norm": 2.739701747894287,
57
+ "learning_rate": 0.00017999999999999998,
58
+ "loss": 0.9915,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.01,
63
+ "grad_norm": 1.6202051639556885,
64
+ "learning_rate": 0.00020999999999999998,
65
+ "loss": 0.4153,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.01,
70
+ "grad_norm": 0.975229799747467,
71
+ "learning_rate": 0.00023999999999999998,
72
+ "loss": 0.1806,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.02,
77
+ "grad_norm": 1.136542558670044,
78
+ "learning_rate": 0.00027,
79
+ "loss": 0.1403,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.02,
84
+ "grad_norm": 3.98671555519104,
85
+ "learning_rate": 0.0003,
86
+ "loss": 0.386,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.02,
91
+ "grad_norm": 0.3339874744415283,
92
+ "learning_rate": 0.0002999997392879692,
93
+ "loss": 0.1334,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.02,
98
+ "grad_norm": 0.4813332259654999,
99
+ "learning_rate": 0.0002999989571527831,
100
+ "loss": 0.1525,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.02,
105
+ "grad_norm": 0.3785192370414734,
106
+ "learning_rate": 0.0002999976535971604,
107
+ "loss": 0.1408,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.02,
112
+ "grad_norm": 0.1563730090856552,
113
+ "learning_rate": 0.00029999582862563263,
114
+ "loss": 0.137,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.03,
119
+ "grad_norm": 0.121751569211483,
120
+ "learning_rate": 0.00029999348224454364,
121
+ "loss": 0.1371,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.03,
126
+ "grad_norm": 0.22550074756145477,
127
+ "learning_rate": 0.0002999906144620498,
128
+ "loss": 0.1512,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.03,
133
+ "grad_norm": 0.2235211282968521,
134
+ "learning_rate": 0.00029998722528811996,
135
+ "loss": 0.1483,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.03,
140
+ "grad_norm": 1.4022941589355469,
141
+ "learning_rate": 0.0002999833147345355,
142
+ "loss": 0.1124,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.03,
147
+ "grad_norm": 0.16621588170528412,
148
+ "learning_rate": 0.0002999788828148901,
149
+ "loss": 0.1414,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.04,
154
+ "grad_norm": 0.06893815100193024,
155
+ "learning_rate": 0.00029997392954458983,
156
+ "loss": 0.1364,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.04,
161
+ "grad_norm": 0.3331284821033478,
162
+ "learning_rate": 0.000299968454940853,
163
+ "loss": 0.1433,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.04,
168
+ "grad_norm": 0.1405547559261322,
169
+ "learning_rate": 0.0002999624590227103,
170
+ "loss": 0.1291,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.04,
175
+ "grad_norm": 0.14127376675605774,
176
+ "learning_rate": 0.00029995594181100437,
177
+ "loss": 0.1298,
178
+ "step": 23
179
+ },
180
+ {
181
+ "epoch": 0.04,
182
+ "grad_norm": 0.20128677785396576,
183
+ "learning_rate": 0.00029994890332839025,
184
+ "loss": 0.1347,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.04,
189
+ "grad_norm": 0.31639915704727173,
190
+ "learning_rate": 0.0002999413435993347,
191
+ "loss": 0.1288,
192
+ "step": 25
193
+ },
194
+ {
195
+ "epoch": 0.05,
196
+ "grad_norm": 0.8167548775672913,
197
+ "learning_rate": 0.00029993326265011667,
198
+ "loss": 0.1785,
199
+ "step": 26
200
+ },
201
+ {
202
+ "epoch": 0.05,
203
+ "grad_norm": 0.1112348735332489,
204
+ "learning_rate": 0.0002999246605088267,
205
+ "loss": 0.1168,
206
+ "step": 27
207
+ },
208
+ {
209
+ "epoch": 0.05,
210
+ "grad_norm": 0.06746704876422882,
211
+ "learning_rate": 0.0002999155372053673,
212
+ "loss": 0.1238,
213
+ "step": 28
214
+ },
215
+ {
216
+ "epoch": 0.05,
217
+ "grad_norm": 0.6724908947944641,
218
+ "learning_rate": 0.0002999058927714525,
219
+ "loss": 0.2079,
220
+ "step": 29
221
+ },
222
+ {
223
+ "epoch": 0.05,
224
+ "grad_norm": 0.1440785676240921,
225
+ "learning_rate": 0.00029989572724060796,
226
+ "loss": 0.1283,
227
+ "step": 30
228
+ },
229
+ {
230
+ "epoch": 0.05,
231
+ "grad_norm": 0.11361633986234665,
232
+ "learning_rate": 0.00029988504064817065,
233
+ "loss": 0.14,
234
+ "step": 31
235
+ },
236
+ {
237
+ "epoch": 0.06,
238
+ "grad_norm": 0.10072154551744461,
239
+ "learning_rate": 0.00029987383303128884,
240
+ "loss": 0.1389,
241
+ "step": 32
242
+ },
243
+ {
244
+ "epoch": 0.06,
245
+ "grad_norm": 0.07634437829256058,
246
+ "learning_rate": 0.00029986210442892213,
247
+ "loss": 0.1373,
248
+ "step": 33
249
+ },
250
+ {
251
+ "epoch": 0.06,
252
+ "grad_norm": 0.16817660629749298,
253
+ "learning_rate": 0.0002998498548818408,
254
+ "loss": 0.1385,
255
+ "step": 34
256
+ },
257
+ {
258
+ "epoch": 0.06,
259
+ "grad_norm": 0.11250842362642288,
260
+ "learning_rate": 0.00029983708443262654,
261
+ "loss": 0.1389,
262
+ "step": 35
263
+ },
264
+ {
265
+ "epoch": 0.06,
266
+ "grad_norm": 0.10796725004911423,
267
+ "learning_rate": 0.0002998237931256712,
268
+ "loss": 0.1414,
269
+ "step": 36
270
+ },
271
+ {
272
+ "epoch": 0.07,
273
+ "grad_norm": 0.04835154488682747,
274
+ "learning_rate": 0.0002998099810071777,
275
+ "loss": 0.1348,
276
+ "step": 37
277
+ },
278
+ {
279
+ "epoch": 0.07,
280
+ "grad_norm": 0.29721006751060486,
281
+ "learning_rate": 0.00029979564812515906,
282
+ "loss": 0.1374,
283
+ "step": 38
284
+ },
285
+ {
286
+ "epoch": 0.07,
287
+ "grad_norm": 0.13514482975006104,
288
+ "learning_rate": 0.0002997807945294387,
289
+ "loss": 0.1395,
290
+ "step": 39
291
+ },
292
+ {
293
+ "epoch": 0.07,
294
+ "grad_norm": 0.2045493870973587,
295
+ "learning_rate": 0.0002997654202716501,
296
+ "loss": 0.1258,
297
+ "step": 40
298
+ },
299
+ {
300
+ "epoch": 0.07,
301
+ "grad_norm": 0.17623500525951385,
302
+ "learning_rate": 0.0002997495254052367,
303
+ "loss": 0.1399,
304
+ "step": 41
305
+ },
306
+ {
307
+ "epoch": 0.07,
308
+ "grad_norm": 0.15333342552185059,
309
+ "learning_rate": 0.00029973310998545157,
310
+ "loss": 0.1407,
311
+ "step": 42
312
+ },
313
+ {
314
+ "epoch": 0.08,
315
+ "grad_norm": 0.11854752153158188,
316
+ "learning_rate": 0.0002997161740693573,
317
+ "loss": 0.1365,
318
+ "step": 43
319
+ },
320
+ {
321
+ "epoch": 0.08,
322
+ "grad_norm": 0.34156811237335205,
323
+ "learning_rate": 0.00029969871771582594,
324
+ "loss": 0.1064,
325
+ "step": 44
326
+ },
327
+ {
328
+ "epoch": 0.08,
329
+ "grad_norm": 0.07359682768583298,
330
+ "learning_rate": 0.0002996807409855385,
331
+ "loss": 0.1267,
332
+ "step": 45
333
+ },
334
+ {
335
+ "epoch": 0.08,
336
+ "grad_norm": 0.2271728217601776,
337
+ "learning_rate": 0.00029966224394098494,
338
+ "loss": 0.1378,
339
+ "step": 46
340
+ },
341
+ {
342
+ "epoch": 0.08,
343
+ "grad_norm": 0.21861566603183746,
344
+ "learning_rate": 0.0002996432266464641,
345
+ "loss": 0.1415,
346
+ "step": 47
347
+ },
348
+ {
349
+ "epoch": 0.08,
350
+ "grad_norm": 0.11931619793176651,
351
+ "learning_rate": 0.00029962368916808306,
352
+ "loss": 0.1375,
353
+ "step": 48
354
+ },
355
+ {
356
+ "epoch": 0.09,
357
+ "grad_norm": 0.19349679350852966,
358
+ "learning_rate": 0.00029960363157375717,
359
+ "loss": 0.132,
360
+ "step": 49
361
+ },
362
+ {
363
+ "epoch": 0.09,
364
+ "grad_norm": 0.35250943899154663,
365
+ "learning_rate": 0.00029958305393320997,
366
+ "loss": 0.1513,
367
+ "step": 50
368
+ },
369
+ {
370
+ "epoch": 0.09,
371
+ "grad_norm": 0.10226023942232132,
372
+ "learning_rate": 0.00029956195631797257,
373
+ "loss": 0.1332,
374
+ "step": 51
375
+ },
376
+ {
377
+ "epoch": 0.09,
378
+ "grad_norm": 0.34944722056388855,
379
+ "learning_rate": 0.00029954033880138364,
380
+ "loss": 0.1512,
381
+ "step": 52
382
+ },
383
+ {
384
+ "epoch": 0.09,
385
+ "grad_norm": 0.24920719861984253,
386
+ "learning_rate": 0.00029951820145858915,
387
+ "loss": 0.1433,
388
+ "step": 53
389
+ },
390
+ {
391
+ "epoch": 0.1,
392
+ "grad_norm": 0.5471547842025757,
393
+ "learning_rate": 0.0002994955443665421,
394
+ "loss": 0.1453,
395
+ "step": 54
396
+ },
397
+ {
398
+ "epoch": 0.1,
399
+ "grad_norm": 0.04468518868088722,
400
+ "learning_rate": 0.00029947236760400215,
401
+ "loss": 0.1328,
402
+ "step": 55
403
+ },
404
+ {
405
+ "epoch": 0.1,
406
+ "grad_norm": 0.1944192349910736,
407
+ "learning_rate": 0.00029944867125153543,
408
+ "loss": 0.1319,
409
+ "step": 56
410
+ },
411
+ {
412
+ "epoch": 0.1,
413
+ "grad_norm": 0.10784479230642319,
414
+ "learning_rate": 0.0002994244553915143,
415
+ "loss": 0.1394,
416
+ "step": 57
417
+ },
418
+ {
419
+ "epoch": 0.1,
420
+ "grad_norm": 0.16469427943229675,
421
+ "learning_rate": 0.0002993997201081169,
422
+ "loss": 0.1448,
423
+ "step": 58
424
+ },
425
+ {
426
+ "epoch": 0.1,
427
+ "grad_norm": 0.07228899002075195,
428
+ "learning_rate": 0.00029937446548732716,
429
+ "loss": 0.1302,
430
+ "step": 59
431
+ },
432
+ {
433
+ "epoch": 0.11,
434
+ "grad_norm": 0.17821665108203888,
435
+ "learning_rate": 0.0002993486916169341,
436
+ "loss": 0.1365,
437
+ "step": 60
438
+ },
439
+ {
440
+ "epoch": 0.11,
441
+ "grad_norm": 0.1656705141067505,
442
+ "learning_rate": 0.0002993223985865318,
443
+ "loss": 0.1232,
444
+ "step": 61
445
+ },
446
+ {
447
+ "epoch": 0.11,
448
+ "grad_norm": 0.25225961208343506,
449
+ "learning_rate": 0.0002992955864875192,
450
+ "loss": 0.1308,
451
+ "step": 62
452
+ },
453
+ {
454
+ "epoch": 0.11,
455
+ "grad_norm": 0.26701709628105164,
456
+ "learning_rate": 0.00029926825541309925,
457
+ "loss": 0.1126,
458
+ "step": 63
459
+ },
460
+ {
461
+ "epoch": 0.11,
462
+ "grad_norm": 0.30766233801841736,
463
+ "learning_rate": 0.0002992404054582793,
464
+ "loss": 0.1051,
465
+ "step": 64
466
+ },
467
+ {
468
+ "epoch": 0.11,
469
+ "grad_norm": 1.0783226490020752,
470
+ "learning_rate": 0.00029921203671987023,
471
+ "loss": 0.1031,
472
+ "step": 65
473
+ },
474
+ {
475
+ "epoch": 0.12,
476
+ "grad_norm": 0.797533392906189,
477
+ "learning_rate": 0.0002991831492964863,
478
+ "loss": 0.1243,
479
+ "step": 66
480
+ },
481
+ {
482
+ "epoch": 0.12,
483
+ "grad_norm": 0.3874399662017822,
484
+ "learning_rate": 0.0002991537432885449,
485
+ "loss": 0.098,
486
+ "step": 67
487
+ },
488
+ {
489
+ "epoch": 0.12,
490
+ "grad_norm": 0.5988464951515198,
491
+ "learning_rate": 0.0002991238187982659,
492
+ "loss": 0.0899,
493
+ "step": 68
494
+ },
495
+ {
496
+ "epoch": 0.12,
497
+ "grad_norm": 0.5161219835281372,
498
+ "learning_rate": 0.00029909337592967173,
499
+ "loss": 0.0893,
500
+ "step": 69
501
+ },
502
+ {
503
+ "epoch": 0.12,
504
+ "grad_norm": 0.9815970659255981,
505
+ "learning_rate": 0.0002990624147885866,
506
+ "loss": 0.1132,
507
+ "step": 70
508
+ },
509
+ {
510
+ "epoch": 0.13,
511
+ "grad_norm": 1.014042615890503,
512
+ "learning_rate": 0.00029903093548263655,
513
+ "loss": 0.1526,
514
+ "step": 71
515
+ },
516
+ {
517
+ "epoch": 0.13,
518
+ "grad_norm": 0.4545246958732605,
519
+ "learning_rate": 0.00029899893812124857,
520
+ "loss": 0.1303,
521
+ "step": 72
522
+ },
523
+ {
524
+ "epoch": 0.13,
525
+ "grad_norm": 0.4577489197254181,
526
+ "learning_rate": 0.00029896642281565067,
527
+ "loss": 0.0745,
528
+ "step": 73
529
+ },
530
+ {
531
+ "epoch": 0.13,
532
+ "grad_norm": 0.49255430698394775,
533
+ "learning_rate": 0.00029893338967887124,
534
+ "loss": 0.0924,
535
+ "step": 74
536
+ },
537
+ {
538
+ "epoch": 0.13,
539
+ "grad_norm": 0.39145103096961975,
540
+ "learning_rate": 0.0002988998388257388,
541
+ "loss": 0.1121,
542
+ "step": 75
543
+ },
544
+ {
545
+ "epoch": 0.13,
546
+ "grad_norm": 0.2706741392612457,
547
+ "learning_rate": 0.00029886577037288147,
548
+ "loss": 0.0727,
549
+ "step": 76
550
+ },
551
+ {
552
+ "epoch": 0.14,
553
+ "grad_norm": 0.1395532339811325,
554
+ "learning_rate": 0.0002988311844387266,
555
+ "loss": 0.0509,
556
+ "step": 77
557
+ },
558
+ {
559
+ "epoch": 0.14,
560
+ "grad_norm": 0.4092063307762146,
561
+ "learning_rate": 0.0002987960811435006,
562
+ "loss": 0.0785,
563
+ "step": 78
564
+ },
565
+ {
566
+ "epoch": 0.14,
567
+ "grad_norm": 0.4469921886920929,
568
+ "learning_rate": 0.000298760460609228,
569
+ "loss": 0.123,
570
+ "step": 79
571
+ },
572
+ {
573
+ "epoch": 0.14,
574
+ "grad_norm": 0.7060185670852661,
575
+ "learning_rate": 0.00029872432295973154,
576
+ "loss": 0.1112,
577
+ "step": 80
578
+ },
579
+ {
580
+ "epoch": 0.14,
581
+ "grad_norm": 0.5608384013175964,
582
+ "learning_rate": 0.00029868766832063154,
583
+ "loss": 0.1248,
584
+ "step": 81
585
+ },
586
+ {
587
+ "epoch": 0.15,
588
+ "grad_norm": 0.2733088731765747,
589
+ "learning_rate": 0.0002986504968193454,
590
+ "loss": 0.08,
591
+ "step": 82
592
+ },
593
+ {
594
+ "epoch": 0.15,
595
+ "grad_norm": 0.28215891122817993,
596
+ "learning_rate": 0.0002986128085850871,
597
+ "loss": 0.0603,
598
+ "step": 83
599
+ },
600
+ {
601
+ "epoch": 0.15,
602
+ "grad_norm": 0.28432655334472656,
603
+ "learning_rate": 0.0002985746037488671,
604
+ "loss": 0.1094,
605
+ "step": 84
606
+ },
607
+ {
608
+ "epoch": 0.15,
609
+ "grad_norm": 0.3250674903392792,
610
+ "learning_rate": 0.00029853588244349154,
611
+ "loss": 0.0937,
612
+ "step": 85
613
+ },
614
+ {
615
+ "epoch": 0.15,
616
+ "grad_norm": 0.31528908014297485,
617
+ "learning_rate": 0.00029849664480356187,
618
+ "loss": 0.0984,
619
+ "step": 86
620
+ },
621
+ {
622
+ "epoch": 0.15,
623
+ "grad_norm": 0.4400915503501892,
624
+ "learning_rate": 0.00029845689096547436,
625
+ "loss": 0.1054,
626
+ "step": 87
627
+ },
628
+ {
629
+ "epoch": 0.16,
630
+ "grad_norm": 0.2794625759124756,
631
+ "learning_rate": 0.0002984166210674198,
632
+ "loss": 0.103,
633
+ "step": 88
634
+ },
635
+ {
636
+ "epoch": 0.16,
637
+ "grad_norm": 0.24721817672252655,
638
+ "learning_rate": 0.00029837583524938287,
639
+ "loss": 0.0763,
640
+ "step": 89
641
+ },
642
+ {
643
+ "epoch": 0.16,
644
+ "grad_norm": 0.17728295922279358,
645
+ "learning_rate": 0.00029833453365314146,
646
+ "loss": 0.0799,
647
+ "step": 90
648
+ },
649
+ {
650
+ "epoch": 0.16,
651
+ "grad_norm": 0.42136892676353455,
652
+ "learning_rate": 0.00029829271642226664,
653
+ "loss": 0.1157,
654
+ "step": 91
655
+ },
656
+ {
657
+ "epoch": 0.16,
658
+ "grad_norm": 0.26066917181015015,
659
+ "learning_rate": 0.0002982503837021218,
660
+ "loss": 0.0754,
661
+ "step": 92
662
+ },
663
+ {
664
+ "epoch": 0.16,
665
+ "grad_norm": 0.3443453013896942,
666
+ "learning_rate": 0.00029820753563986226,
667
+ "loss": 0.1262,
668
+ "step": 93
669
+ },
670
+ {
671
+ "epoch": 0.17,
672
+ "grad_norm": 1.1035971641540527,
673
+ "learning_rate": 0.0002981641723844348,
674
+ "loss": 0.2149,
675
+ "step": 94
676
+ },
677
+ {
678
+ "epoch": 0.17,
679
+ "grad_norm": 0.4937790036201477,
680
+ "learning_rate": 0.00029812029408657695,
681
+ "loss": 0.0519,
682
+ "step": 95
683
+ },
684
+ {
685
+ "epoch": 0.17,
686
+ "grad_norm": 0.25491034984588623,
687
+ "learning_rate": 0.00029807590089881683,
688
+ "loss": 0.0463,
689
+ "step": 96
690
+ },
691
+ {
692
+ "epoch": 0.17,
693
+ "grad_norm": 0.8630254864692688,
694
+ "learning_rate": 0.00029803099297547216,
695
+ "loss": 0.1097,
696
+ "step": 97
697
+ },
698
+ {
699
+ "epoch": 0.17,
700
+ "grad_norm": 0.7856675386428833,
701
+ "learning_rate": 0.0002979855704726502,
702
+ "loss": 0.1249,
703
+ "step": 98
704
+ },
705
+ {
706
+ "epoch": 0.18,
707
+ "grad_norm": 0.41131559014320374,
708
+ "learning_rate": 0.00029793963354824685,
709
+ "loss": 0.0578,
710
+ "step": 99
711
+ },
712
+ {
713
+ "epoch": 0.18,
714
+ "grad_norm": 0.2710832357406616,
715
+ "learning_rate": 0.00029789318236194616,
716
+ "loss": 0.0695,
717
+ "step": 100
718
+ },
719
+ {
720
+ "epoch": 0.18,
721
+ "grad_norm": 0.37780898809432983,
722
+ "learning_rate": 0.0002978462170752199,
723
+ "loss": 0.1595,
724
+ "step": 101
725
+ },
726
+ {
727
+ "epoch": 0.18,
728
+ "grad_norm": 0.6756994128227234,
729
+ "learning_rate": 0.00029779873785132696,
730
+ "loss": 0.1593,
731
+ "step": 102
732
+ },
733
+ {
734
+ "epoch": 0.18,
735
+ "grad_norm": 0.3440113067626953,
736
+ "learning_rate": 0.0002977507448553128,
737
+ "loss": 0.1084,
738
+ "step": 103
739
+ },
740
+ {
741
+ "epoch": 0.18,
742
+ "grad_norm": 0.46663540601730347,
743
+ "learning_rate": 0.0002977022382540087,
744
+ "loss": 0.1467,
745
+ "step": 104
746
+ },
747
+ {
748
+ "epoch": 0.19,
749
+ "grad_norm": 0.29806986451148987,
750
+ "learning_rate": 0.0002976532182160314,
751
+ "loss": 0.114,
752
+ "step": 105
753
+ },
754
+ {
755
+ "epoch": 0.19,
756
+ "grad_norm": 0.17679756879806519,
757
+ "learning_rate": 0.0002976036849117824,
758
+ "loss": 0.1148,
759
+ "step": 106
760
+ },
761
+ {
762
+ "epoch": 0.19,
763
+ "grad_norm": 0.17152459919452667,
764
+ "learning_rate": 0.0002975536385134475,
765
+ "loss": 0.1135,
766
+ "step": 107
767
+ },
768
+ {
769
+ "epoch": 0.19,
770
+ "grad_norm": 0.16383178532123566,
771
+ "learning_rate": 0.00029750307919499595,
772
+ "loss": 0.0987,
773
+ "step": 108
774
+ },
775
+ {
776
+ "epoch": 0.19,
777
+ "grad_norm": 0.27941015362739563,
778
+ "learning_rate": 0.00029745200713217996,
779
+ "loss": 0.141,
780
+ "step": 109
781
+ },
782
+ {
783
+ "epoch": 0.19,
784
+ "grad_norm": 0.1865178793668747,
785
+ "learning_rate": 0.0002974004225025344,
786
+ "loss": 0.1066,
787
+ "step": 110
788
+ },
789
+ {
790
+ "epoch": 0.2,
791
+ "grad_norm": 0.09909848123788834,
792
+ "learning_rate": 0.0002973483254853756,
793
+ "loss": 0.0829,
794
+ "step": 111
795
+ },
796
+ {
797
+ "epoch": 0.2,
798
+ "grad_norm": 0.17434453964233398,
799
+ "learning_rate": 0.0002972957162618011,
800
+ "loss": 0.0908,
801
+ "step": 112
802
+ },
803
+ {
804
+ "epoch": 0.2,
805
+ "grad_norm": 0.1075962707400322,
806
+ "learning_rate": 0.0002972425950146891,
807
+ "loss": 0.1005,
808
+ "step": 113
809
+ },
810
+ {
811
+ "epoch": 0.2,
812
+ "grad_norm": 0.23516638576984406,
813
+ "learning_rate": 0.00029718896192869755,
814
+ "loss": 0.107,
815
+ "step": 114
816
+ },
817
+ {
818
+ "epoch": 0.2,
819
+ "grad_norm": 0.1640479862689972,
820
+ "learning_rate": 0.00029713481719026365,
821
+ "loss": 0.0947,
822
+ "step": 115
823
+ },
824
+ {
825
+ "epoch": 0.21,
826
+ "grad_norm": 0.1907346248626709,
827
+ "learning_rate": 0.00029708016098760315,
828
+ "loss": 0.0757,
829
+ "step": 116
830
+ },
831
+ {
832
+ "epoch": 0.21,
833
+ "grad_norm": 0.26523101329803467,
834
+ "learning_rate": 0.0002970249935107099,
835
+ "loss": 0.1213,
836
+ "step": 117
837
+ },
838
+ {
839
+ "epoch": 0.21,
840
+ "grad_norm": 0.4174201190471649,
841
+ "learning_rate": 0.0002969693149513548,
842
+ "loss": 0.1036,
843
+ "step": 118
844
+ },
845
+ {
846
+ "epoch": 0.21,
847
+ "grad_norm": 0.5090858340263367,
848
+ "learning_rate": 0.00029691312550308546,
849
+ "loss": 0.1229,
850
+ "step": 119
851
+ },
852
+ {
853
+ "epoch": 0.21,
854
+ "grad_norm": 0.5807089805603027,
855
+ "learning_rate": 0.00029685642536122543,
856
+ "loss": 0.1017,
857
+ "step": 120
858
+ },
859
+ {
860
+ "epoch": 0.21,
861
+ "grad_norm": 0.20680812001228333,
862
+ "learning_rate": 0.00029679921472287353,
863
+ "loss": 0.0656,
864
+ "step": 121
865
+ },
866
+ {
867
+ "epoch": 0.22,
868
+ "grad_norm": 0.8702337145805359,
869
+ "learning_rate": 0.0002967414937869031,
870
+ "loss": 0.2062,
871
+ "step": 122
872
+ },
873
+ {
874
+ "epoch": 0.22,
875
+ "grad_norm": 0.8191081881523132,
876
+ "learning_rate": 0.00029668326275396133,
877
+ "loss": 0.1474,
878
+ "step": 123
879
+ },
880
+ {
881
+ "epoch": 0.22,
882
+ "grad_norm": 0.3332749307155609,
883
+ "learning_rate": 0.0002966245218264687,
884
+ "loss": 0.0991,
885
+ "step": 124
886
+ },
887
+ {
888
+ "epoch": 0.22,
889
+ "grad_norm": 0.4073905050754547,
890
+ "learning_rate": 0.000296565271208618,
891
+ "loss": 0.1113,
892
+ "step": 125
893
+ },
894
+ {
895
+ "epoch": 0.22,
896
+ "grad_norm": 1.1542918682098389,
897
+ "learning_rate": 0.00029650551110637393,
898
+ "loss": 0.1672,
899
+ "step": 126
900
+ },
901
+ {
902
+ "epoch": 0.22,
903
+ "grad_norm": 1.1717615127563477,
904
+ "learning_rate": 0.0002964452417274723,
905
+ "loss": 0.1665,
906
+ "step": 127
907
+ },
908
+ {
909
+ "epoch": 0.23,
910
+ "grad_norm": 0.24656681716442108,
911
+ "learning_rate": 0.00029638446328141894,
912
+ "loss": 0.113,
913
+ "step": 128
914
+ },
915
+ {
916
+ "epoch": 0.23,
917
+ "grad_norm": 0.12859101593494415,
918
+ "learning_rate": 0.00029632317597948964,
919
+ "loss": 0.111,
920
+ "step": 129
921
+ },
922
+ {
923
+ "epoch": 0.23,
924
+ "grad_norm": 0.0825003981590271,
925
+ "learning_rate": 0.0002962613800347288,
926
+ "loss": 0.1235,
927
+ "step": 130
928
+ },
929
+ {
930
+ "epoch": 0.23,
931
+ "grad_norm": 0.14479093253612518,
932
+ "learning_rate": 0.0002961990756619491,
933
+ "loss": 0.1031,
934
+ "step": 131
935
+ },
936
+ {
937
+ "epoch": 0.23,
938
+ "grad_norm": 0.2117856740951538,
939
+ "learning_rate": 0.0002961362630777305,
940
+ "loss": 0.0995,
941
+ "step": 132
942
+ },
943
+ {
944
+ "epoch": 0.24,
945
+ "grad_norm": 0.1228349581360817,
946
+ "learning_rate": 0.00029607294250041965,
947
+ "loss": 0.0804,
948
+ "step": 133
949
+ },
950
+ {
951
+ "epoch": 0.24,
952
+ "grad_norm": 0.18281131982803345,
953
+ "learning_rate": 0.000296009114150129,
954
+ "loss": 0.0843,
955
+ "step": 134
956
+ },
957
+ {
958
+ "epoch": 0.24,
959
+ "grad_norm": 0.2280908077955246,
960
+ "learning_rate": 0.0002959447782487361,
961
+ "loss": 0.1361,
962
+ "step": 135
963
+ },
964
+ {
965
+ "epoch": 0.24,
966
+ "grad_norm": 0.21089224517345428,
967
+ "learning_rate": 0.0002958799350198829,
968
+ "loss": 0.136,
969
+ "step": 136
970
+ },
971
+ {
972
+ "epoch": 0.24,
973
+ "grad_norm": 0.4448394477367401,
974
+ "learning_rate": 0.00029581458468897485,
975
+ "loss": 0.1293,
976
+ "step": 137
977
+ },
978
+ {
979
+ "epoch": 0.24,
980
+ "grad_norm": 0.35630327463150024,
981
+ "learning_rate": 0.0002957487274831803,
982
+ "loss": 0.0892,
983
+ "step": 138
984
+ },
985
+ {
986
+ "epoch": 0.25,
987
+ "grad_norm": 0.3235824406147003,
988
+ "learning_rate": 0.00029568236363142924,
989
+ "loss": 0.0862,
990
+ "step": 139
991
+ },
992
+ {
993
+ "epoch": 0.25,
994
+ "grad_norm": 0.5782188177108765,
995
+ "learning_rate": 0.0002956154933644133,
996
+ "loss": 0.1067,
997
+ "step": 140
998
+ },
999
+ {
1000
+ "epoch": 0.25,
1001
+ "grad_norm": 0.0916428491473198,
1002
+ "learning_rate": 0.00029554811691458405,
1003
+ "loss": 0.0717,
1004
+ "step": 141
1005
+ },
1006
+ {
1007
+ "epoch": 0.25,
1008
+ "grad_norm": 0.10682029277086258,
1009
+ "learning_rate": 0.00029548023451615295,
1010
+ "loss": 0.0729,
1011
+ "step": 142
1012
+ },
1013
+ {
1014
+ "epoch": 0.25,
1015
+ "eval_loss": 0.09042291343212128,
1016
+ "eval_runtime": 14.7658,
1017
+ "eval_samples_per_second": 32.304,
1018
+ "eval_steps_per_second": 8.127,
1019
+ "step": 142
1020
+ },
1021
+ {
1022
+ "epoch": 0.25,
1023
+ "grad_norm": 0.10448458790779114,
1024
+ "learning_rate": 0.00029541184640509015,
1025
+ "loss": 0.1013,
1026
+ "step": 143
1027
+ },
1028
+ {
1029
+ "epoch": 0.25,
1030
+ "grad_norm": 0.20653600990772247,
1031
+ "learning_rate": 0.00029534295281912355,
1032
+ "loss": 0.1109,
1033
+ "step": 144
1034
+ },
1035
+ {
1036
+ "epoch": 0.26,
1037
+ "grad_norm": 0.09114749729633331,
1038
+ "learning_rate": 0.00029527355399773845,
1039
+ "loss": 0.098,
1040
+ "step": 145
1041
+ },
1042
+ {
1043
+ "epoch": 0.26,
1044
+ "grad_norm": 0.13702392578125,
1045
+ "learning_rate": 0.0002952036501821762,
1046
+ "loss": 0.0434,
1047
+ "step": 146
1048
+ },
1049
+ {
1050
+ "epoch": 0.26,
1051
+ "grad_norm": 0.21909640729427338,
1052
+ "learning_rate": 0.00029513324161543366,
1053
+ "loss": 0.1072,
1054
+ "step": 147
1055
+ },
1056
+ {
1057
+ "epoch": 0.26,
1058
+ "grad_norm": 0.1765926033258438,
1059
+ "learning_rate": 0.00029506232854226237,
1060
+ "loss": 0.0912,
1061
+ "step": 148
1062
+ },
1063
+ {
1064
+ "epoch": 0.26,
1065
+ "grad_norm": 0.26851925253868103,
1066
+ "learning_rate": 0.00029499091120916755,
1067
+ "loss": 0.1134,
1068
+ "step": 149
1069
+ },
1070
+ {
1071
+ "epoch": 0.27,
1072
+ "grad_norm": 0.15720008313655853,
1073
+ "learning_rate": 0.0002949189898644072,
1074
+ "loss": 0.0953,
1075
+ "step": 150
1076
+ },
1077
+ {
1078
+ "epoch": 0.27,
1079
+ "grad_norm": 0.31068509817123413,
1080
+ "learning_rate": 0.0002948465647579916,
1081
+ "loss": 0.1179,
1082
+ "step": 151
1083
+ },
1084
+ {
1085
+ "epoch": 0.27,
1086
+ "grad_norm": 0.3737366497516632,
1087
+ "learning_rate": 0.00029477363614168194,
1088
+ "loss": 0.0745,
1089
+ "step": 152
1090
+ },
1091
+ {
1092
+ "epoch": 0.27,
1093
+ "grad_norm": 0.295796275138855,
1094
+ "learning_rate": 0.0002947002042689898,
1095
+ "loss": 0.1448,
1096
+ "step": 153
1097
+ },
1098
+ {
1099
+ "epoch": 0.27,
1100
+ "grad_norm": 0.21946462988853455,
1101
+ "learning_rate": 0.0002946262693951762,
1102
+ "loss": 0.0938,
1103
+ "step": 154
1104
+ },
1105
+ {
1106
+ "epoch": 0.27,
1107
+ "grad_norm": 0.1442556530237198,
1108
+ "learning_rate": 0.00029455183177725053,
1109
+ "loss": 0.0778,
1110
+ "step": 155
1111
+ },
1112
+ {
1113
+ "epoch": 0.28,
1114
+ "grad_norm": 0.15714137256145477,
1115
+ "learning_rate": 0.00029447689167396996,
1116
+ "loss": 0.1192,
1117
+ "step": 156
1118
+ },
1119
+ {
1120
+ "epoch": 0.28,
1121
+ "grad_norm": 0.1749090850353241,
1122
+ "learning_rate": 0.0002944014493458383,
1123
+ "loss": 0.1065,
1124
+ "step": 157
1125
+ },
1126
+ {
1127
+ "epoch": 0.28,
1128
+ "grad_norm": 0.4440750777721405,
1129
+ "learning_rate": 0.0002943255050551051,
1130
+ "loss": 0.1143,
1131
+ "step": 158
1132
+ },
1133
+ {
1134
+ "epoch": 0.28,
1135
+ "grad_norm": 0.3883216083049774,
1136
+ "learning_rate": 0.0002942490590657651,
1137
+ "loss": 0.1257,
1138
+ "step": 159
1139
+ },
1140
+ {
1141
+ "epoch": 0.28,
1142
+ "grad_norm": 0.1770515888929367,
1143
+ "learning_rate": 0.00029417211164355664,
1144
+ "loss": 0.0917,
1145
+ "step": 160
1146
+ },
1147
+ {
1148
+ "epoch": 0.28,
1149
+ "grad_norm": 0.13733014464378357,
1150
+ "learning_rate": 0.0002940946630559613,
1151
+ "loss": 0.0694,
1152
+ "step": 161
1153
+ },
1154
+ {
1155
+ "epoch": 0.29,
1156
+ "grad_norm": 0.10783812403678894,
1157
+ "learning_rate": 0.0002940167135722029,
1158
+ "loss": 0.053,
1159
+ "step": 162
1160
+ },
1161
+ {
1162
+ "epoch": 0.29,
1163
+ "grad_norm": 0.4282841086387634,
1164
+ "learning_rate": 0.0002939382634632463,
1165
+ "loss": 0.1514,
1166
+ "step": 163
1167
+ },
1168
+ {
1169
+ "epoch": 0.29,
1170
+ "grad_norm": 0.2022620588541031,
1171
+ "learning_rate": 0.00029385931300179673,
1172
+ "loss": 0.093,
1173
+ "step": 164
1174
+ },
1175
+ {
1176
+ "epoch": 0.29,
1177
+ "grad_norm": 0.09893293678760529,
1178
+ "learning_rate": 0.0002937798624622985,
1179
+ "loss": 0.0482,
1180
+ "step": 165
1181
+ },
1182
+ {
1183
+ "epoch": 0.29,
1184
+ "grad_norm": 0.24493345618247986,
1185
+ "learning_rate": 0.0002936999121209346,
1186
+ "loss": 0.1104,
1187
+ "step": 166
1188
+ },
1189
+ {
1190
+ "epoch": 0.3,
1191
+ "grad_norm": 0.558118999004364,
1192
+ "learning_rate": 0.0002936194622556251,
1193
+ "loss": 0.1593,
1194
+ "step": 167
1195
+ },
1196
+ {
1197
+ "epoch": 0.3,
1198
+ "grad_norm": 0.30332863330841064,
1199
+ "learning_rate": 0.00029353851314602674,
1200
+ "loss": 0.1431,
1201
+ "step": 168
1202
+ },
1203
+ {
1204
+ "epoch": 0.3,
1205
+ "grad_norm": 0.22926372289657593,
1206
+ "learning_rate": 0.00029345706507353153,
1207
+ "loss": 0.0903,
1208
+ "step": 169
1209
+ },
1210
+ {
1211
+ "epoch": 0.3,
1212
+ "grad_norm": 0.1272840052843094,
1213
+ "learning_rate": 0.0002933751183212661,
1214
+ "loss": 0.0581,
1215
+ "step": 170
1216
+ },
1217
+ {
1218
+ "epoch": 0.3,
1219
+ "grad_norm": 0.14229409396648407,
1220
+ "learning_rate": 0.0002932926731740905,
1221
+ "loss": 0.0786,
1222
+ "step": 171
1223
+ },
1224
+ {
1225
+ "epoch": 0.3,
1226
+ "grad_norm": 0.15394841134548187,
1227
+ "learning_rate": 0.00029320972991859725,
1228
+ "loss": 0.0891,
1229
+ "step": 172
1230
+ },
1231
+ {
1232
+ "epoch": 0.31,
1233
+ "grad_norm": 0.14996570348739624,
1234
+ "learning_rate": 0.00029312628884311045,
1235
+ "loss": 0.0697,
1236
+ "step": 173
1237
+ },
1238
+ {
1239
+ "epoch": 0.31,
1240
+ "grad_norm": 0.17957860231399536,
1241
+ "learning_rate": 0.0002930423502376846,
1242
+ "loss": 0.0597,
1243
+ "step": 174
1244
+ },
1245
+ {
1246
+ "epoch": 0.31,
1247
+ "grad_norm": 0.2494930922985077,
1248
+ "learning_rate": 0.00029295791439410383,
1249
+ "loss": 0.1173,
1250
+ "step": 175
1251
+ },
1252
+ {
1253
+ "epoch": 0.31,
1254
+ "grad_norm": 0.25140491127967834,
1255
+ "learning_rate": 0.0002928729816058807,
1256
+ "loss": 0.1015,
1257
+ "step": 176
1258
+ },
1259
+ {
1260
+ "epoch": 0.31,
1261
+ "grad_norm": 0.23032979667186737,
1262
+ "learning_rate": 0.00029278755216825505,
1263
+ "loss": 0.1271,
1264
+ "step": 177
1265
+ },
1266
+ {
1267
+ "epoch": 0.31,
1268
+ "grad_norm": 0.18228159844875336,
1269
+ "learning_rate": 0.0002927016263781935,
1270
+ "loss": 0.0758,
1271
+ "step": 178
1272
+ },
1273
+ {
1274
+ "epoch": 0.32,
1275
+ "grad_norm": 0.18998126685619354,
1276
+ "learning_rate": 0.0002926152045343877,
1277
+ "loss": 0.0658,
1278
+ "step": 179
1279
+ },
1280
+ {
1281
+ "epoch": 0.32,
1282
+ "grad_norm": 0.2079799771308899,
1283
+ "learning_rate": 0.00029252828693725403,
1284
+ "loss": 0.1376,
1285
+ "step": 180
1286
+ },
1287
+ {
1288
+ "epoch": 0.32,
1289
+ "grad_norm": 0.20679551362991333,
1290
+ "learning_rate": 0.00029244087388893185,
1291
+ "loss": 0.0989,
1292
+ "step": 181
1293
+ },
1294
+ {
1295
+ "epoch": 0.32,
1296
+ "grad_norm": 0.13382777571678162,
1297
+ "learning_rate": 0.000292352965693283,
1298
+ "loss": 0.0739,
1299
+ "step": 182
1300
+ },
1301
+ {
1302
+ "epoch": 0.32,
1303
+ "grad_norm": 0.1363653689622879,
1304
+ "learning_rate": 0.00029226456265589045,
1305
+ "loss": 0.0781,
1306
+ "step": 183
1307
+ },
1308
+ {
1309
+ "epoch": 0.33,
1310
+ "grad_norm": 0.21474190056324005,
1311
+ "learning_rate": 0.00029217566508405737,
1312
+ "loss": 0.0994,
1313
+ "step": 184
1314
+ },
1315
+ {
1316
+ "epoch": 0.33,
1317
+ "grad_norm": 0.1632685363292694,
1318
+ "learning_rate": 0.000292086273286806,
1319
+ "loss": 0.0938,
1320
+ "step": 185
1321
+ },
1322
+ {
1323
+ "epoch": 0.33,
1324
+ "grad_norm": 0.18359023332595825,
1325
+ "learning_rate": 0.0002919963875748765,
1326
+ "loss": 0.0837,
1327
+ "step": 186
1328
+ },
1329
+ {
1330
+ "epoch": 0.33,
1331
+ "grad_norm": 0.21232351660728455,
1332
+ "learning_rate": 0.000291906008260726,
1333
+ "loss": 0.1021,
1334
+ "step": 187
1335
+ },
1336
+ {
1337
+ "epoch": 0.33,
1338
+ "grad_norm": 0.1560080200433731,
1339
+ "learning_rate": 0.0002918151356585276,
1340
+ "loss": 0.0775,
1341
+ "step": 188
1342
+ },
1343
+ {
1344
+ "epoch": 0.33,
1345
+ "grad_norm": 0.206360325217247,
1346
+ "learning_rate": 0.00029172377008416893,
1347
+ "loss": 0.0859,
1348
+ "step": 189
1349
+ },
1350
+ {
1351
+ "epoch": 0.34,
1352
+ "grad_norm": 0.16424915194511414,
1353
+ "learning_rate": 0.0002916319118552515,
1354
+ "loss": 0.1071,
1355
+ "step": 190
1356
+ },
1357
+ {
1358
+ "epoch": 0.34,
1359
+ "grad_norm": 0.15049318969249725,
1360
+ "learning_rate": 0.00029153956129108913,
1361
+ "loss": 0.0837,
1362
+ "step": 191
1363
+ },
1364
+ {
1365
+ "epoch": 0.34,
1366
+ "grad_norm": 0.08157264441251755,
1367
+ "learning_rate": 0.0002914467187127073,
1368
+ "loss": 0.063,
1369
+ "step": 192
1370
+ },
1371
+ {
1372
+ "epoch": 0.34,
1373
+ "grad_norm": 0.2039349228143692,
1374
+ "learning_rate": 0.00029135338444284166,
1375
+ "loss": 0.1077,
1376
+ "step": 193
1377
+ },
1378
+ {
1379
+ "epoch": 0.34,
1380
+ "grad_norm": 0.1816401183605194,
1381
+ "learning_rate": 0.00029125955880593705,
1382
+ "loss": 0.1035,
1383
+ "step": 194
1384
+ },
1385
+ {
1386
+ "epoch": 0.34,
1387
+ "grad_norm": 0.13115471601486206,
1388
+ "learning_rate": 0.0002911652421281465,
1389
+ "loss": 0.0862,
1390
+ "step": 195
1391
+ },
1392
+ {
1393
+ "epoch": 0.35,
1394
+ "grad_norm": 0.20337167382240295,
1395
+ "learning_rate": 0.00029107043473732995,
1396
+ "loss": 0.0724,
1397
+ "step": 196
1398
+ },
1399
+ {
1400
+ "epoch": 0.35,
1401
+ "grad_norm": 0.12583452463150024,
1402
+ "learning_rate": 0.000290975136963053,
1403
+ "loss": 0.0701,
1404
+ "step": 197
1405
+ },
1406
+ {
1407
+ "epoch": 0.35,
1408
+ "grad_norm": 0.4595123827457428,
1409
+ "learning_rate": 0.0002908793491365861,
1410
+ "loss": 0.1763,
1411
+ "step": 198
1412
+ },
1413
+ {
1414
+ "epoch": 0.35,
1415
+ "grad_norm": 0.17089878022670746,
1416
+ "learning_rate": 0.00029078307159090294,
1417
+ "loss": 0.0478,
1418
+ "step": 199
1419
+ },
1420
+ {
1421
+ "epoch": 0.35,
1422
+ "grad_norm": 0.22770017385482788,
1423
+ "learning_rate": 0.00029068630466067995,
1424
+ "loss": 0.0551,
1425
+ "step": 200
1426
+ },
1427
+ {
1428
+ "epoch": 0.36,
1429
+ "grad_norm": 0.16812334954738617,
1430
+ "learning_rate": 0.00029058904868229426,
1431
+ "loss": 0.0829,
1432
+ "step": 201
1433
+ },
1434
+ {
1435
+ "epoch": 0.36,
1436
+ "grad_norm": 0.15563331544399261,
1437
+ "learning_rate": 0.0002904913039938234,
1438
+ "loss": 0.0551,
1439
+ "step": 202
1440
+ },
1441
+ {
1442
+ "epoch": 0.36,
1443
+ "grad_norm": 0.14948880672454834,
1444
+ "learning_rate": 0.00029039307093504355,
1445
+ "loss": 0.1255,
1446
+ "step": 203
1447
+ },
1448
+ {
1449
+ "epoch": 0.36,
1450
+ "grad_norm": 0.4740292429924011,
1451
+ "learning_rate": 0.0002902943498474286,
1452
+ "loss": 0.1865,
1453
+ "step": 204
1454
+ },
1455
+ {
1456
+ "epoch": 0.36,
1457
+ "grad_norm": 0.2227841019630432,
1458
+ "learning_rate": 0.00029019514107414887,
1459
+ "loss": 0.0801,
1460
+ "step": 205
1461
+ },
1462
+ {
1463
+ "epoch": 0.36,
1464
+ "grad_norm": 0.3277839422225952,
1465
+ "learning_rate": 0.00029009544496006996,
1466
+ "loss": 0.0785,
1467
+ "step": 206
1468
+ },
1469
+ {
1470
+ "epoch": 0.37,
1471
+ "grad_norm": 0.30582112073898315,
1472
+ "learning_rate": 0.0002899952618517515,
1473
+ "loss": 0.0802,
1474
+ "step": 207
1475
+ },
1476
+ {
1477
+ "epoch": 0.37,
1478
+ "grad_norm": 0.2919937074184418,
1479
+ "learning_rate": 0.00028989459209744617,
1480
+ "loss": 0.0533,
1481
+ "step": 208
1482
+ },
1483
+ {
1484
+ "epoch": 0.37,
1485
+ "grad_norm": 0.31071627140045166,
1486
+ "learning_rate": 0.00028979343604709816,
1487
+ "loss": 0.1474,
1488
+ "step": 209
1489
+ },
1490
+ {
1491
+ "epoch": 0.37,
1492
+ "grad_norm": 0.14612245559692383,
1493
+ "learning_rate": 0.000289691794052342,
1494
+ "loss": 0.1118,
1495
+ "step": 210
1496
+ },
1497
+ {
1498
+ "epoch": 0.37,
1499
+ "grad_norm": 0.2461383044719696,
1500
+ "learning_rate": 0.0002895896664665017,
1501
+ "loss": 0.155,
1502
+ "step": 211
1503
+ },
1504
+ {
1505
+ "epoch": 0.38,
1506
+ "grad_norm": 0.2300606220960617,
1507
+ "learning_rate": 0.0002894870536445891,
1508
+ "loss": 0.1023,
1509
+ "step": 212
1510
+ },
1511
+ {
1512
+ "epoch": 0.38,
1513
+ "grad_norm": 0.3330621123313904,
1514
+ "learning_rate": 0.0002893839559433028,
1515
+ "loss": 0.1851,
1516
+ "step": 213
1517
+ },
1518
+ {
1519
+ "epoch": 0.38,
1520
+ "grad_norm": 0.08405052870512009,
1521
+ "learning_rate": 0.00028928037372102694,
1522
+ "loss": 0.1162,
1523
+ "step": 214
1524
+ },
1525
+ {
1526
+ "epoch": 0.38,
1527
+ "grad_norm": 0.08986380696296692,
1528
+ "learning_rate": 0.00028917630733783,
1529
+ "loss": 0.1033,
1530
+ "step": 215
1531
+ },
1532
+ {
1533
+ "epoch": 0.38,
1534
+ "grad_norm": 0.08752616494894028,
1535
+ "learning_rate": 0.00028907175715546334,
1536
+ "loss": 0.1081,
1537
+ "step": 216
1538
+ },
1539
+ {
1540
+ "epoch": 0.38,
1541
+ "grad_norm": 0.15312182903289795,
1542
+ "learning_rate": 0.00028896672353736027,
1543
+ "loss": 0.1084,
1544
+ "step": 217
1545
+ },
1546
+ {
1547
+ "epoch": 0.39,
1548
+ "grad_norm": 0.1530596911907196,
1549
+ "learning_rate": 0.00028886120684863437,
1550
+ "loss": 0.1143,
1551
+ "step": 218
1552
+ },
1553
+ {
1554
+ "epoch": 0.39,
1555
+ "grad_norm": 0.19303447008132935,
1556
+ "learning_rate": 0.00028875520745607865,
1557
+ "loss": 0.1322,
1558
+ "step": 219
1559
+ },
1560
+ {
1561
+ "epoch": 0.39,
1562
+ "grad_norm": 0.2029002606868744,
1563
+ "learning_rate": 0.00028864872572816405,
1564
+ "loss": 0.1,
1565
+ "step": 220
1566
+ },
1567
+ {
1568
+ "epoch": 0.39,
1569
+ "grad_norm": 0.0897076427936554,
1570
+ "learning_rate": 0.00028854176203503806,
1571
+ "loss": 0.0964,
1572
+ "step": 221
1573
+ },
1574
+ {
1575
+ "epoch": 0.39,
1576
+ "grad_norm": 0.14917291700839996,
1577
+ "learning_rate": 0.00028843431674852363,
1578
+ "loss": 0.078,
1579
+ "step": 222
1580
+ },
1581
+ {
1582
+ "epoch": 0.39,
1583
+ "grad_norm": 0.1606171429157257,
1584
+ "learning_rate": 0.00028832639024211785,
1585
+ "loss": 0.0844,
1586
+ "step": 223
1587
+ },
1588
+ {
1589
+ "epoch": 0.4,
1590
+ "grad_norm": 0.15833866596221924,
1591
+ "learning_rate": 0.0002882179828909905,
1592
+ "loss": 0.103,
1593
+ "step": 224
1594
+ },
1595
+ {
1596
+ "epoch": 0.4,
1597
+ "grad_norm": 0.2102007120847702,
1598
+ "learning_rate": 0.00028810909507198304,
1599
+ "loss": 0.0783,
1600
+ "step": 225
1601
+ },
1602
+ {
1603
+ "epoch": 0.4,
1604
+ "grad_norm": 0.14001865684986115,
1605
+ "learning_rate": 0.00028799972716360693,
1606
+ "loss": 0.0999,
1607
+ "step": 226
1608
+ },
1609
+ {
1610
+ "epoch": 0.4,
1611
+ "grad_norm": 0.07050840556621552,
1612
+ "learning_rate": 0.00028788987954604255,
1613
+ "loss": 0.0504,
1614
+ "step": 227
1615
+ },
1616
+ {
1617
+ "epoch": 0.4,
1618
+ "grad_norm": 0.1809457242488861,
1619
+ "learning_rate": 0.0002877795526011379,
1620
+ "loss": 0.063,
1621
+ "step": 228
1622
+ },
1623
+ {
1624
+ "epoch": 0.41,
1625
+ "grad_norm": 0.19804933667182922,
1626
+ "learning_rate": 0.00028766874671240706,
1627
+ "loss": 0.0819,
1628
+ "step": 229
1629
+ },
1630
+ {
1631
+ "epoch": 0.41,
1632
+ "grad_norm": 0.8398628830909729,
1633
+ "learning_rate": 0.0002875574622650291,
1634
+ "loss": 0.0495,
1635
+ "step": 230
1636
+ },
1637
+ {
1638
+ "epoch": 0.41,
1639
+ "grad_norm": 0.28259506821632385,
1640
+ "learning_rate": 0.0002874456996458466,
1641
+ "loss": 0.147,
1642
+ "step": 231
1643
+ },
1644
+ {
1645
+ "epoch": 0.41,
1646
+ "grad_norm": 0.5770221948623657,
1647
+ "learning_rate": 0.00028733345924336444,
1648
+ "loss": 0.0941,
1649
+ "step": 232
1650
+ },
1651
+ {
1652
+ "epoch": 0.41,
1653
+ "grad_norm": 0.2959941625595093,
1654
+ "learning_rate": 0.0002872207414477482,
1655
+ "loss": 0.15,
1656
+ "step": 233
1657
+ },
1658
+ {
1659
+ "epoch": 0.41,
1660
+ "grad_norm": 0.41449636220932007,
1661
+ "learning_rate": 0.0002871075466508229,
1662
+ "loss": 0.1244,
1663
+ "step": 234
1664
+ },
1665
+ {
1666
+ "epoch": 0.42,
1667
+ "grad_norm": 0.20178668200969696,
1668
+ "learning_rate": 0.000286993875246072,
1669
+ "loss": 0.1241,
1670
+ "step": 235
1671
+ },
1672
+ {
1673
+ "epoch": 0.42,
1674
+ "grad_norm": 0.2657439708709717,
1675
+ "learning_rate": 0.0002868797276286355,
1676
+ "loss": 0.108,
1677
+ "step": 236
1678
+ },
1679
+ {
1680
+ "epoch": 0.42,
1681
+ "grad_norm": 0.26215022802352905,
1682
+ "learning_rate": 0.0002867651041953087,
1683
+ "loss": 0.0814,
1684
+ "step": 237
1685
+ },
1686
+ {
1687
+ "epoch": 0.42,
1688
+ "grad_norm": 0.17194584012031555,
1689
+ "learning_rate": 0.00028665000534454116,
1690
+ "loss": 0.0937,
1691
+ "step": 238
1692
+ },
1693
+ {
1694
+ "epoch": 0.42,
1695
+ "grad_norm": 0.14481855928897858,
1696
+ "learning_rate": 0.00028653443147643495,
1697
+ "loss": 0.0866,
1698
+ "step": 239
1699
+ },
1700
+ {
1701
+ "epoch": 0.42,
1702
+ "grad_norm": 0.2787633240222931,
1703
+ "learning_rate": 0.00028641838299274335,
1704
+ "loss": 0.0711,
1705
+ "step": 240
1706
+ },
1707
+ {
1708
+ "epoch": 0.43,
1709
+ "grad_norm": 0.20350907742977142,
1710
+ "learning_rate": 0.0002863018602968695,
1711
+ "loss": 0.146,
1712
+ "step": 241
1713
+ },
1714
+ {
1715
+ "epoch": 0.43,
1716
+ "grad_norm": 0.29709184169769287,
1717
+ "learning_rate": 0.0002861848637938649,
1718
+ "loss": 0.1273,
1719
+ "step": 242
1720
+ },
1721
+ {
1722
+ "epoch": 0.43,
1723
+ "grad_norm": 0.15158367156982422,
1724
+ "learning_rate": 0.00028606739389042834,
1725
+ "loss": 0.0778,
1726
+ "step": 243
1727
+ },
1728
+ {
1729
+ "epoch": 0.43,
1730
+ "grad_norm": 0.13614635169506073,
1731
+ "learning_rate": 0.0002859494509949039,
1732
+ "loss": 0.0609,
1733
+ "step": 244
1734
+ },
1735
+ {
1736
+ "epoch": 0.43,
1737
+ "grad_norm": 0.20077449083328247,
1738
+ "learning_rate": 0.00028583103551728004,
1739
+ "loss": 0.097,
1740
+ "step": 245
1741
+ },
1742
+ {
1743
+ "epoch": 0.44,
1744
+ "grad_norm": 0.08916395157575607,
1745
+ "learning_rate": 0.00028571214786918806,
1746
+ "loss": 0.0704,
1747
+ "step": 246
1748
+ },
1749
+ {
1750
+ "epoch": 0.44,
1751
+ "grad_norm": 0.18170690536499023,
1752
+ "learning_rate": 0.00028559278846390033,
1753
+ "loss": 0.0662,
1754
+ "step": 247
1755
+ },
1756
+ {
1757
+ "epoch": 0.44,
1758
+ "grad_norm": 0.20803312957286835,
1759
+ "learning_rate": 0.00028547295771632936,
1760
+ "loss": 0.0683,
1761
+ "step": 248
1762
+ },
1763
+ {
1764
+ "epoch": 0.44,
1765
+ "grad_norm": 0.40586671233177185,
1766
+ "learning_rate": 0.0002853526560430261,
1767
+ "loss": 0.0909,
1768
+ "step": 249
1769
+ },
1770
+ {
1771
+ "epoch": 0.44,
1772
+ "grad_norm": 0.16656708717346191,
1773
+ "learning_rate": 0.0002852318838621784,
1774
+ "loss": 0.0793,
1775
+ "step": 250
1776
+ },
1777
+ {
1778
+ "epoch": 0.44,
1779
+ "grad_norm": 0.24462048709392548,
1780
+ "learning_rate": 0.00028511064159360977,
1781
+ "loss": 0.12,
1782
+ "step": 251
1783
+ },
1784
+ {
1785
+ "epoch": 0.45,
1786
+ "grad_norm": 0.32009223103523254,
1787
+ "learning_rate": 0.00028498892965877776,
1788
+ "loss": 0.1005,
1789
+ "step": 252
1790
+ },
1791
+ {
1792
+ "epoch": 0.45,
1793
+ "grad_norm": 0.17075763642787933,
1794
+ "learning_rate": 0.0002848667484807726,
1795
+ "loss": 0.088,
1796
+ "step": 253
1797
+ },
1798
+ {
1799
+ "epoch": 0.45,
1800
+ "grad_norm": 0.4186219573020935,
1801
+ "learning_rate": 0.00028474409848431556,
1802
+ "loss": 0.1242,
1803
+ "step": 254
1804
+ },
1805
+ {
1806
+ "epoch": 0.45,
1807
+ "grad_norm": 0.2534870505332947,
1808
+ "learning_rate": 0.0002846209800957579,
1809
+ "loss": 0.0672,
1810
+ "step": 255
1811
+ },
1812
+ {
1813
+ "epoch": 0.45,
1814
+ "grad_norm": 0.22438766062259674,
1815
+ "learning_rate": 0.00028449739374307876,
1816
+ "loss": 0.0628,
1817
+ "step": 256
1818
+ },
1819
+ {
1820
+ "epoch": 0.45,
1821
+ "grad_norm": 0.3011839687824249,
1822
+ "learning_rate": 0.00028437333985588414,
1823
+ "loss": 0.0731,
1824
+ "step": 257
1825
+ },
1826
+ {
1827
+ "epoch": 0.46,
1828
+ "grad_norm": 0.3355525732040405,
1829
+ "learning_rate": 0.00028424881886540525,
1830
+ "loss": 0.1556,
1831
+ "step": 258
1832
+ },
1833
+ {
1834
+ "epoch": 0.46,
1835
+ "grad_norm": 0.3344305455684662,
1836
+ "learning_rate": 0.00028412383120449705,
1837
+ "loss": 0.1138,
1838
+ "step": 259
1839
+ },
1840
+ {
1841
+ "epoch": 0.46,
1842
+ "grad_norm": 0.12889593839645386,
1843
+ "learning_rate": 0.00028399837730763667,
1844
+ "loss": 0.0386,
1845
+ "step": 260
1846
+ },
1847
+ {
1848
+ "epoch": 0.46,
1849
+ "grad_norm": 0.1852964162826538,
1850
+ "learning_rate": 0.000283872457610922,
1851
+ "loss": 0.0777,
1852
+ "step": 261
1853
+ },
1854
+ {
1855
+ "epoch": 0.46,
1856
+ "grad_norm": 0.15753400325775146,
1857
+ "learning_rate": 0.00028374607255207007,
1858
+ "loss": 0.0519,
1859
+ "step": 262
1860
+ },
1861
+ {
1862
+ "epoch": 0.47,
1863
+ "grad_norm": 0.33515694737434387,
1864
+ "learning_rate": 0.00028361922257041575,
1865
+ "loss": 0.1075,
1866
+ "step": 263
1867
+ },
1868
+ {
1869
+ "epoch": 0.47,
1870
+ "grad_norm": 0.4648870825767517,
1871
+ "learning_rate": 0.00028349190810690974,
1872
+ "loss": 0.1426,
1873
+ "step": 264
1874
+ },
1875
+ {
1876
+ "epoch": 0.47,
1877
+ "grad_norm": 0.47806718945503235,
1878
+ "learning_rate": 0.0002833641296041176,
1879
+ "loss": 0.1695,
1880
+ "step": 265
1881
+ },
1882
+ {
1883
+ "epoch": 0.47,
1884
+ "grad_norm": 0.13909588754177094,
1885
+ "learning_rate": 0.000283235887506218,
1886
+ "loss": 0.0683,
1887
+ "step": 266
1888
+ },
1889
+ {
1890
+ "epoch": 0.47,
1891
+ "grad_norm": 0.19695843756198883,
1892
+ "learning_rate": 0.0002831071822590009,
1893
+ "loss": 0.072,
1894
+ "step": 267
1895
+ },
1896
+ {
1897
+ "epoch": 0.47,
1898
+ "grad_norm": 0.10471002012491226,
1899
+ "learning_rate": 0.00028297801430986647,
1900
+ "loss": 0.0725,
1901
+ "step": 268
1902
+ },
1903
+ {
1904
+ "epoch": 0.48,
1905
+ "grad_norm": 0.11718752980232239,
1906
+ "learning_rate": 0.0002828483841078232,
1907
+ "loss": 0.0799,
1908
+ "step": 269
1909
+ },
1910
+ {
1911
+ "epoch": 0.48,
1912
+ "grad_norm": 0.18288259208202362,
1913
+ "learning_rate": 0.0002827182921034865,
1914
+ "loss": 0.1348,
1915
+ "step": 270
1916
+ },
1917
+ {
1918
+ "epoch": 0.48,
1919
+ "grad_norm": 0.13153032958507538,
1920
+ "learning_rate": 0.000282587738749077,
1921
+ "loss": 0.0865,
1922
+ "step": 271
1923
+ },
1924
+ {
1925
+ "epoch": 0.48,
1926
+ "grad_norm": 0.2975251376628876,
1927
+ "learning_rate": 0.00028245672449841915,
1928
+ "loss": 0.118,
1929
+ "step": 272
1930
+ },
1931
+ {
1932
+ "epoch": 0.48,
1933
+ "grad_norm": 0.23405657708644867,
1934
+ "learning_rate": 0.00028232524980693945,
1935
+ "loss": 0.1012,
1936
+ "step": 273
1937
+ },
1938
+ {
1939
+ "epoch": 0.48,
1940
+ "grad_norm": 0.15189243853092194,
1941
+ "learning_rate": 0.000282193315131665,
1942
+ "loss": 0.1089,
1943
+ "step": 274
1944
+ },
1945
+ {
1946
+ "epoch": 0.49,
1947
+ "grad_norm": 0.11026138812303543,
1948
+ "learning_rate": 0.0002820609209312219,
1949
+ "loss": 0.0626,
1950
+ "step": 275
1951
+ },
1952
+ {
1953
+ "epoch": 0.49,
1954
+ "grad_norm": 0.11485940217971802,
1955
+ "learning_rate": 0.0002819280676658337,
1956
+ "loss": 0.0767,
1957
+ "step": 276
1958
+ },
1959
+ {
1960
+ "epoch": 0.49,
1961
+ "grad_norm": 0.3087170422077179,
1962
+ "learning_rate": 0.0002817947557973196,
1963
+ "loss": 0.0892,
1964
+ "step": 277
1965
+ },
1966
+ {
1967
+ "epoch": 0.49,
1968
+ "grad_norm": 0.07682602852582932,
1969
+ "learning_rate": 0.00028166098578909313,
1970
+ "loss": 0.0467,
1971
+ "step": 278
1972
+ },
1973
+ {
1974
+ "epoch": 0.49,
1975
+ "grad_norm": 0.34041598439216614,
1976
+ "learning_rate": 0.0002815267581061602,
1977
+ "loss": 0.0758,
1978
+ "step": 279
1979
+ },
1980
+ {
1981
+ "epoch": 0.5,
1982
+ "grad_norm": 0.24435921013355255,
1983
+ "learning_rate": 0.0002813920732151177,
1984
+ "loss": 0.0772,
1985
+ "step": 280
1986
+ },
1987
+ {
1988
+ "epoch": 0.5,
1989
+ "grad_norm": 0.2376328855752945,
1990
+ "learning_rate": 0.0002812569315841521,
1991
+ "loss": 0.0935,
1992
+ "step": 281
1993
+ },
1994
+ {
1995
+ "epoch": 0.5,
1996
+ "grad_norm": 0.0582437627017498,
1997
+ "learning_rate": 0.0002811213336830373,
1998
+ "loss": 0.0224,
1999
+ "step": 282
2000
+ },
2001
+ {
2002
+ "epoch": 0.5,
2003
+ "grad_norm": 0.19927099347114563,
2004
+ "learning_rate": 0.00028098527998313334,
2005
+ "loss": 0.1243,
2006
+ "step": 283
2007
+ },
2008
+ {
2009
+ "epoch": 0.5,
2010
+ "grad_norm": 0.15403445065021515,
2011
+ "learning_rate": 0.00028084877095738473,
2012
+ "loss": 0.0278,
2013
+ "step": 284
2014
+ },
2015
+ {
2016
+ "epoch": 0.5,
2017
+ "eval_loss": 0.078863725066185,
2018
+ "eval_runtime": 14.7476,
2019
+ "eval_samples_per_second": 32.344,
2020
+ "eval_steps_per_second": 8.137,
2021
+ "step": 284
2022
+ },
2023
+ {
2024
+ "epoch": 0.5,
2025
+ "grad_norm": 0.240775465965271,
2026
+ "learning_rate": 0.0002807118070803187,
2027
+ "loss": 0.0359,
2028
+ "step": 285
2029
+ },
2030
+ {
2031
+ "epoch": 0.51,
2032
+ "grad_norm": 0.38222241401672363,
2033
+ "learning_rate": 0.0002805743888280437,
2034
+ "loss": 0.1152,
2035
+ "step": 286
2036
+ },
2037
+ {
2038
+ "epoch": 0.51,
2039
+ "grad_norm": 0.20165561139583588,
2040
+ "learning_rate": 0.0002804365166782476,
2041
+ "loss": 0.0426,
2042
+ "step": 287
2043
+ },
2044
+ {
2045
+ "epoch": 0.51,
2046
+ "grad_norm": 0.4264529049396515,
2047
+ "learning_rate": 0.00028029819111019614,
2048
+ "loss": 0.1029,
2049
+ "step": 288
2050
+ },
2051
+ {
2052
+ "epoch": 0.51,
2053
+ "grad_norm": 0.22892819344997406,
2054
+ "learning_rate": 0.00028015941260473113,
2055
+ "loss": 0.0956,
2056
+ "step": 289
2057
+ },
2058
+ {
2059
+ "epoch": 0.51,
2060
+ "grad_norm": 0.29828211665153503,
2061
+ "learning_rate": 0.00028002018164426893,
2062
+ "loss": 0.0788,
2063
+ "step": 290
2064
+ },
2065
+ {
2066
+ "epoch": 0.51,
2067
+ "grad_norm": 0.19386076927185059,
2068
+ "learning_rate": 0.00027988049871279874,
2069
+ "loss": 0.0889,
2070
+ "step": 291
2071
+ },
2072
+ {
2073
+ "epoch": 0.52,
2074
+ "grad_norm": 0.30981379747390747,
2075
+ "learning_rate": 0.0002797403642958808,
2076
+ "loss": 0.1692,
2077
+ "step": 292
2078
+ },
2079
+ {
2080
+ "epoch": 0.52,
2081
+ "grad_norm": 0.36764079332351685,
2082
+ "learning_rate": 0.00027959977888064477,
2083
+ "loss": 0.0837,
2084
+ "step": 293
2085
+ },
2086
+ {
2087
+ "epoch": 0.52,
2088
+ "grad_norm": 0.1701124757528305,
2089
+ "learning_rate": 0.00027945874295578826,
2090
+ "loss": 0.1026,
2091
+ "step": 294
2092
+ },
2093
+ {
2094
+ "epoch": 0.52,
2095
+ "grad_norm": 0.11988788843154907,
2096
+ "learning_rate": 0.0002793172570115746,
2097
+ "loss": 0.0993,
2098
+ "step": 295
2099
+ },
2100
+ {
2101
+ "epoch": 0.52,
2102
+ "grad_norm": 0.15950341522693634,
2103
+ "learning_rate": 0.00027917532153983176,
2104
+ "loss": 0.0597,
2105
+ "step": 296
2106
+ },
2107
+ {
2108
+ "epoch": 0.53,
2109
+ "grad_norm": 0.18084204196929932,
2110
+ "learning_rate": 0.0002790329370339501,
2111
+ "loss": 0.0776,
2112
+ "step": 297
2113
+ },
2114
+ {
2115
+ "epoch": 0.53,
2116
+ "grad_norm": 0.1948510855436325,
2117
+ "learning_rate": 0.000278890103988881,
2118
+ "loss": 0.0899,
2119
+ "step": 298
2120
+ },
2121
+ {
2122
+ "epoch": 0.53,
2123
+ "grad_norm": 0.16357307136058807,
2124
+ "learning_rate": 0.0002787468229011351,
2125
+ "loss": 0.109,
2126
+ "step": 299
2127
+ },
2128
+ {
2129
+ "epoch": 0.53,
2130
+ "grad_norm": 0.15433883666992188,
2131
+ "learning_rate": 0.0002786030942687805,
2132
+ "loss": 0.0884,
2133
+ "step": 300
2134
+ },
2135
+ {
2136
+ "epoch": 0.53,
2137
+ "grad_norm": 0.11737463623285294,
2138
+ "learning_rate": 0.00027845891859144085,
2139
+ "loss": 0.0868,
2140
+ "step": 301
2141
+ },
2142
+ {
2143
+ "epoch": 0.53,
2144
+ "grad_norm": 0.1610182225704193,
2145
+ "learning_rate": 0.000278314296370294,
2146
+ "loss": 0.1315,
2147
+ "step": 302
2148
+ },
2149
+ {
2150
+ "epoch": 0.54,
2151
+ "grad_norm": 0.1955747902393341,
2152
+ "learning_rate": 0.00027816922810806996,
2153
+ "loss": 0.0893,
2154
+ "step": 303
2155
+ },
2156
+ {
2157
+ "epoch": 0.54,
2158
+ "grad_norm": 0.25150609016418457,
2159
+ "learning_rate": 0.0002780237143090493,
2160
+ "loss": 0.1179,
2161
+ "step": 304
2162
+ },
2163
+ {
2164
+ "epoch": 0.54,
2165
+ "grad_norm": 0.24072997272014618,
2166
+ "learning_rate": 0.0002778777554790614,
2167
+ "loss": 0.0967,
2168
+ "step": 305
2169
+ },
2170
+ {
2171
+ "epoch": 0.54,
2172
+ "grad_norm": 0.2026025652885437,
2173
+ "learning_rate": 0.00027773135212548245,
2174
+ "loss": 0.0809,
2175
+ "step": 306
2176
+ },
2177
+ {
2178
+ "epoch": 0.54,
2179
+ "grad_norm": 0.17768602073192596,
2180
+ "learning_rate": 0.000277584504757234,
2181
+ "loss": 0.0726,
2182
+ "step": 307
2183
+ },
2184
+ {
2185
+ "epoch": 0.54,
2186
+ "grad_norm": 0.22531519830226898,
2187
+ "learning_rate": 0.00027743721388478115,
2188
+ "loss": 0.0797,
2189
+ "step": 308
2190
+ },
2191
+ {
2192
+ "epoch": 0.55,
2193
+ "grad_norm": 0.22690407931804657,
2194
+ "learning_rate": 0.00027728948002013053,
2195
+ "loss": 0.068,
2196
+ "step": 309
2197
+ },
2198
+ {
2199
+ "epoch": 0.55,
2200
+ "grad_norm": 0.3111308217048645,
2201
+ "learning_rate": 0.00027714130367682875,
2202
+ "loss": 0.1222,
2203
+ "step": 310
2204
+ },
2205
+ {
2206
+ "epoch": 0.55,
2207
+ "grad_norm": 0.31476208567619324,
2208
+ "learning_rate": 0.0002769926853699606,
2209
+ "loss": 0.123,
2210
+ "step": 311
2211
+ },
2212
+ {
2213
+ "epoch": 0.55,
2214
+ "grad_norm": 0.19214238226413727,
2215
+ "learning_rate": 0.0002768436256161471,
2216
+ "loss": 0.0778,
2217
+ "step": 312
2218
+ },
2219
+ {
2220
+ "epoch": 0.55,
2221
+ "grad_norm": 0.21092087030410767,
2222
+ "learning_rate": 0.0002766941249335439,
2223
+ "loss": 0.0908,
2224
+ "step": 313
2225
+ },
2226
+ {
2227
+ "epoch": 0.56,
2228
+ "grad_norm": 0.24106797575950623,
2229
+ "learning_rate": 0.00027654418384183925,
2230
+ "loss": 0.1054,
2231
+ "step": 314
2232
+ },
2233
+ {
2234
+ "epoch": 0.56,
2235
+ "grad_norm": 0.24553944170475006,
2236
+ "learning_rate": 0.0002763938028622526,
2237
+ "loss": 0.0687,
2238
+ "step": 315
2239
+ },
2240
+ {
2241
+ "epoch": 0.56,
2242
+ "grad_norm": 0.18032313883304596,
2243
+ "learning_rate": 0.0002762429825175323,
2244
+ "loss": 0.0984,
2245
+ "step": 316
2246
+ },
2247
+ {
2248
+ "epoch": 0.56,
2249
+ "grad_norm": 0.2341250777244568,
2250
+ "learning_rate": 0.000276091723331954,
2251
+ "loss": 0.0861,
2252
+ "step": 317
2253
+ },
2254
+ {
2255
+ "epoch": 0.56,
2256
+ "grad_norm": 0.23054689168930054,
2257
+ "learning_rate": 0.000275940025831319,
2258
+ "loss": 0.1023,
2259
+ "step": 318
2260
+ },
2261
+ {
2262
+ "epoch": 0.56,
2263
+ "grad_norm": 0.15571041405200958,
2264
+ "learning_rate": 0.000275787890542952,
2265
+ "loss": 0.061,
2266
+ "step": 319
2267
+ },
2268
+ {
2269
+ "epoch": 0.57,
2270
+ "grad_norm": 0.16762854158878326,
2271
+ "learning_rate": 0.0002756353179956998,
2272
+ "loss": 0.1124,
2273
+ "step": 320
2274
+ },
2275
+ {
2276
+ "epoch": 0.57,
2277
+ "grad_norm": 0.16507089138031006,
2278
+ "learning_rate": 0.000275482308719929,
2279
+ "loss": 0.1121,
2280
+ "step": 321
2281
+ },
2282
+ {
2283
+ "epoch": 0.57,
2284
+ "grad_norm": 0.166361466050148,
2285
+ "learning_rate": 0.00027532886324752433,
2286
+ "loss": 0.1243,
2287
+ "step": 322
2288
+ },
2289
+ {
2290
+ "epoch": 0.57,
2291
+ "grad_norm": 0.21798831224441528,
2292
+ "learning_rate": 0.000275174982111887,
2293
+ "loss": 0.1074,
2294
+ "step": 323
2295
+ },
2296
+ {
2297
+ "epoch": 0.57,
2298
+ "grad_norm": 0.19063718616962433,
2299
+ "learning_rate": 0.0002750206658479324,
2300
+ "loss": 0.1058,
2301
+ "step": 324
2302
+ },
2303
+ {
2304
+ "epoch": 0.57,
2305
+ "grad_norm": 0.20267756283283234,
2306
+ "learning_rate": 0.00027486591499208867,
2307
+ "loss": 0.0875,
2308
+ "step": 325
2309
+ },
2310
+ {
2311
+ "epoch": 0.58,
2312
+ "grad_norm": 0.11513421684503555,
2313
+ "learning_rate": 0.0002747107300822946,
2314
+ "loss": 0.0674,
2315
+ "step": 326
2316
+ },
2317
+ {
2318
+ "epoch": 0.58,
2319
+ "grad_norm": 0.16988199949264526,
2320
+ "learning_rate": 0.0002745551116579978,
2321
+ "loss": 0.089,
2322
+ "step": 327
2323
+ },
2324
+ {
2325
+ "epoch": 0.58,
2326
+ "grad_norm": 0.20574574172496796,
2327
+ "learning_rate": 0.0002743990602601529,
2328
+ "loss": 0.0906,
2329
+ "step": 328
2330
+ },
2331
+ {
2332
+ "epoch": 0.58,
2333
+ "grad_norm": 0.14412453770637512,
2334
+ "learning_rate": 0.00027424257643121966,
2335
+ "loss": 0.0996,
2336
+ "step": 329
2337
+ },
2338
+ {
2339
+ "epoch": 0.58,
2340
+ "grad_norm": 0.1305454671382904,
2341
+ "learning_rate": 0.00027408566071516084,
2342
+ "loss": 0.0636,
2343
+ "step": 330
2344
+ },
2345
+ {
2346
+ "epoch": 0.59,
2347
+ "grad_norm": 0.18056617677211761,
2348
+ "learning_rate": 0.00027392831365744073,
2349
+ "loss": 0.1004,
2350
+ "step": 331
2351
+ },
2352
+ {
2353
+ "epoch": 0.59,
2354
+ "grad_norm": 0.15762409567832947,
2355
+ "learning_rate": 0.00027377053580502297,
2356
+ "loss": 0.0938,
2357
+ "step": 332
2358
+ },
2359
+ {
2360
+ "epoch": 0.59,
2361
+ "grad_norm": 0.2165631651878357,
2362
+ "learning_rate": 0.00027361232770636856,
2363
+ "loss": 0.0829,
2364
+ "step": 333
2365
+ },
2366
+ {
2367
+ "epoch": 0.59,
2368
+ "grad_norm": 0.21345216035842896,
2369
+ "learning_rate": 0.0002734536899114343,
2370
+ "loss": 0.1053,
2371
+ "step": 334
2372
+ },
2373
+ {
2374
+ "epoch": 0.59,
2375
+ "grad_norm": 0.22907692193984985,
2376
+ "learning_rate": 0.00027329462297167066,
2377
+ "loss": 0.1451,
2378
+ "step": 335
2379
+ },
2380
+ {
2381
+ "epoch": 0.59,
2382
+ "grad_norm": 0.24929089844226837,
2383
+ "learning_rate": 0.0002731351274400198,
2384
+ "loss": 0.0909,
2385
+ "step": 336
2386
+ },
2387
+ {
2388
+ "epoch": 0.6,
2389
+ "grad_norm": 0.13142186403274536,
2390
+ "learning_rate": 0.00027297520387091376,
2391
+ "loss": 0.0523,
2392
+ "step": 337
2393
+ },
2394
+ {
2395
+ "epoch": 0.6,
2396
+ "grad_norm": 0.27698859572410583,
2397
+ "learning_rate": 0.0002728148528202725,
2398
+ "loss": 0.0865,
2399
+ "step": 338
2400
+ },
2401
+ {
2402
+ "epoch": 0.6,
2403
+ "grad_norm": 0.2599867880344391,
2404
+ "learning_rate": 0.000272654074845502,
2405
+ "loss": 0.0654,
2406
+ "step": 339
2407
+ },
2408
+ {
2409
+ "epoch": 0.6,
2410
+ "grad_norm": 0.22103819251060486,
2411
+ "learning_rate": 0.0002724928705054924,
2412
+ "loss": 0.1108,
2413
+ "step": 340
2414
+ },
2415
+ {
2416
+ "epoch": 0.6,
2417
+ "grad_norm": 0.2073899507522583,
2418
+ "learning_rate": 0.0002723312403606157,
2419
+ "loss": 0.0928,
2420
+ "step": 341
2421
+ },
2422
+ {
2423
+ "epoch": 0.61,
2424
+ "grad_norm": 0.23784543573856354,
2425
+ "learning_rate": 0.00027216918497272426,
2426
+ "loss": 0.095,
2427
+ "step": 342
2428
+ },
2429
+ {
2430
+ "epoch": 0.61,
2431
+ "grad_norm": 0.16584208607673645,
2432
+ "learning_rate": 0.0002720067049051486,
2433
+ "loss": 0.0521,
2434
+ "step": 343
2435
+ },
2436
+ {
2437
+ "epoch": 0.61,
2438
+ "grad_norm": 0.1800609678030014,
2439
+ "learning_rate": 0.0002718438007226955,
2440
+ "loss": 0.0737,
2441
+ "step": 344
2442
+ },
2443
+ {
2444
+ "epoch": 0.61,
2445
+ "grad_norm": 0.1386508196592331,
2446
+ "learning_rate": 0.0002716804729916461,
2447
+ "loss": 0.0522,
2448
+ "step": 345
2449
+ },
2450
+ {
2451
+ "epoch": 0.61,
2452
+ "grad_norm": 0.22217071056365967,
2453
+ "learning_rate": 0.0002715167222797537,
2454
+ "loss": 0.1045,
2455
+ "step": 346
2456
+ },
2457
+ {
2458
+ "epoch": 0.61,
2459
+ "grad_norm": 0.26573020219802856,
2460
+ "learning_rate": 0.0002713525491562421,
2461
+ "loss": 0.0719,
2462
+ "step": 347
2463
+ },
2464
+ {
2465
+ "epoch": 0.62,
2466
+ "grad_norm": 0.20932160317897797,
2467
+ "learning_rate": 0.00027118795419180336,
2468
+ "loss": 0.1289,
2469
+ "step": 348
2470
+ },
2471
+ {
2472
+ "epoch": 0.62,
2473
+ "grad_norm": 0.19539090991020203,
2474
+ "learning_rate": 0.000271022937958596,
2475
+ "loss": 0.0606,
2476
+ "step": 349
2477
+ },
2478
+ {
2479
+ "epoch": 0.62,
2480
+ "grad_norm": 0.15271329879760742,
2481
+ "learning_rate": 0.00027085750103024295,
2482
+ "loss": 0.0343,
2483
+ "step": 350
2484
+ },
2485
+ {
2486
+ "epoch": 0.62,
2487
+ "grad_norm": 0.25894200801849365,
2488
+ "learning_rate": 0.00027069164398182944,
2489
+ "loss": 0.0762,
2490
+ "step": 351
2491
+ },
2492
+ {
2493
+ "epoch": 0.62,
2494
+ "grad_norm": 0.16486695408821106,
2495
+ "learning_rate": 0.00027052536738990125,
2496
+ "loss": 0.0618,
2497
+ "step": 352
2498
+ },
2499
+ {
2500
+ "epoch": 0.62,
2501
+ "grad_norm": 0.24119453132152557,
2502
+ "learning_rate": 0.00027035867183246244,
2503
+ "loss": 0.1013,
2504
+ "step": 353
2505
+ },
2506
+ {
2507
+ "epoch": 0.63,
2508
+ "grad_norm": 0.35628098249435425,
2509
+ "learning_rate": 0.00027019155788897355,
2510
+ "loss": 0.0878,
2511
+ "step": 354
2512
+ },
2513
+ {
2514
+ "epoch": 0.63,
2515
+ "grad_norm": 0.14005188643932343,
2516
+ "learning_rate": 0.0002700240261403494,
2517
+ "loss": 0.0432,
2518
+ "step": 355
2519
+ },
2520
+ {
2521
+ "epoch": 0.63,
2522
+ "grad_norm": 0.13526731729507446,
2523
+ "learning_rate": 0.0002698560771689572,
2524
+ "loss": 0.0513,
2525
+ "step": 356
2526
+ },
2527
+ {
2528
+ "epoch": 0.63,
2529
+ "grad_norm": 0.2159578949213028,
2530
+ "learning_rate": 0.0002696877115586146,
2531
+ "loss": 0.0831,
2532
+ "step": 357
2533
+ },
2534
+ {
2535
+ "epoch": 0.63,
2536
+ "grad_norm": 0.26970624923706055,
2537
+ "learning_rate": 0.00026951892989458744,
2538
+ "loss": 0.1336,
2539
+ "step": 358
2540
+ },
2541
+ {
2542
+ "epoch": 0.64,
2543
+ "grad_norm": 0.17370541393756866,
2544
+ "learning_rate": 0.00026934973276358787,
2545
+ "loss": 0.073,
2546
+ "step": 359
2547
+ },
2548
+ {
2549
+ "epoch": 0.64,
2550
+ "grad_norm": 0.19606231153011322,
2551
+ "learning_rate": 0.0002691801207537722,
2552
+ "loss": 0.0718,
2553
+ "step": 360
2554
+ },
2555
+ {
2556
+ "epoch": 0.64,
2557
+ "grad_norm": 0.2545556426048279,
2558
+ "learning_rate": 0.0002690100944547391,
2559
+ "loss": 0.1326,
2560
+ "step": 361
2561
+ },
2562
+ {
2563
+ "epoch": 0.64,
2564
+ "grad_norm": 0.15419915318489075,
2565
+ "learning_rate": 0.0002688396544575271,
2566
+ "loss": 0.0391,
2567
+ "step": 362
2568
+ },
2569
+ {
2570
+ "epoch": 0.64,
2571
+ "grad_norm": 0.2486819475889206,
2572
+ "learning_rate": 0.0002686688013546131,
2573
+ "loss": 0.1099,
2574
+ "step": 363
2575
+ },
2576
+ {
2577
+ "epoch": 0.64,
2578
+ "grad_norm": 0.12814386188983917,
2579
+ "learning_rate": 0.0002684975357399099,
2580
+ "loss": 0.0437,
2581
+ "step": 364
2582
+ },
2583
+ {
2584
+ "epoch": 0.65,
2585
+ "grad_norm": 0.09224840253591537,
2586
+ "learning_rate": 0.00026832585820876407,
2587
+ "loss": 0.0487,
2588
+ "step": 365
2589
+ },
2590
+ {
2591
+ "epoch": 0.65,
2592
+ "grad_norm": 0.16062654554843903,
2593
+ "learning_rate": 0.00026815376935795444,
2594
+ "loss": 0.0549,
2595
+ "step": 366
2596
+ },
2597
+ {
2598
+ "epoch": 0.65,
2599
+ "grad_norm": 0.267597496509552,
2600
+ "learning_rate": 0.0002679812697856894,
2601
+ "loss": 0.117,
2602
+ "step": 367
2603
+ },
2604
+ {
2605
+ "epoch": 0.65,
2606
+ "grad_norm": 0.23974187672138214,
2607
+ "learning_rate": 0.0002678083600916051,
2608
+ "loss": 0.0536,
2609
+ "step": 368
2610
+ },
2611
+ {
2612
+ "epoch": 0.65,
2613
+ "grad_norm": 0.1853066086769104,
2614
+ "learning_rate": 0.0002676350408767634,
2615
+ "loss": 0.0392,
2616
+ "step": 369
2617
+ },
2618
+ {
2619
+ "epoch": 0.65,
2620
+ "grad_norm": 0.4043184220790863,
2621
+ "learning_rate": 0.00026746131274364975,
2622
+ "loss": 0.1079,
2623
+ "step": 370
2624
+ },
2625
+ {
2626
+ "epoch": 0.66,
2627
+ "grad_norm": 0.19574593007564545,
2628
+ "learning_rate": 0.0002672871762961709,
2629
+ "loss": 0.0866,
2630
+ "step": 371
2631
+ },
2632
+ {
2633
+ "epoch": 0.66,
2634
+ "grad_norm": 0.34985387325286865,
2635
+ "learning_rate": 0.00026711263213965314,
2636
+ "loss": 0.1326,
2637
+ "step": 372
2638
+ },
2639
+ {
2640
+ "epoch": 0.66,
2641
+ "grad_norm": 0.3007662892341614,
2642
+ "learning_rate": 0.0002669376808808399,
2643
+ "loss": 0.0793,
2644
+ "step": 373
2645
+ },
2646
+ {
2647
+ "epoch": 0.66,
2648
+ "grad_norm": 0.2934662103652954,
2649
+ "learning_rate": 0.00026676232312788993,
2650
+ "loss": 0.1095,
2651
+ "step": 374
2652
+ },
2653
+ {
2654
+ "epoch": 0.66,
2655
+ "grad_norm": 0.19983640313148499,
2656
+ "learning_rate": 0.0002665865594903748,
2657
+ "loss": 0.063,
2658
+ "step": 375
2659
+ },
2660
+ {
2661
+ "epoch": 0.67,
2662
+ "grad_norm": 0.20034237205982208,
2663
+ "learning_rate": 0.0002664103905792772,
2664
+ "loss": 0.0927,
2665
+ "step": 376
2666
+ },
2667
+ {
2668
+ "epoch": 0.67,
2669
+ "grad_norm": 0.24908727407455444,
2670
+ "learning_rate": 0.0002662338170069884,
2671
+ "loss": 0.0869,
2672
+ "step": 377
2673
+ },
2674
+ {
2675
+ "epoch": 0.67,
2676
+ "grad_norm": 0.14556318521499634,
2677
+ "learning_rate": 0.0002660568393873066,
2678
+ "loss": 0.0679,
2679
+ "step": 378
2680
+ },
2681
+ {
2682
+ "epoch": 0.67,
2683
+ "grad_norm": 0.14582981169223785,
2684
+ "learning_rate": 0.0002658794583354343,
2685
+ "loss": 0.062,
2686
+ "step": 379
2687
+ },
2688
+ {
2689
+ "epoch": 0.67,
2690
+ "grad_norm": 0.21219995617866516,
2691
+ "learning_rate": 0.00026570167446797656,
2692
+ "loss": 0.1065,
2693
+ "step": 380
2694
+ },
2695
+ {
2696
+ "epoch": 0.67,
2697
+ "grad_norm": 0.1637437492609024,
2698
+ "learning_rate": 0.0002655234884029385,
2699
+ "loss": 0.0754,
2700
+ "step": 381
2701
+ },
2702
+ {
2703
+ "epoch": 0.68,
2704
+ "grad_norm": 0.3341504633426666,
2705
+ "learning_rate": 0.00026534490075972363,
2706
+ "loss": 0.1185,
2707
+ "step": 382
2708
+ },
2709
+ {
2710
+ "epoch": 0.68,
2711
+ "grad_norm": 0.28448009490966797,
2712
+ "learning_rate": 0.00026516591215913115,
2713
+ "loss": 0.1244,
2714
+ "step": 383
2715
+ },
2716
+ {
2717
+ "epoch": 0.68,
2718
+ "grad_norm": 0.10381971299648285,
2719
+ "learning_rate": 0.0002649865232233541,
2720
+ "loss": 0.0538,
2721
+ "step": 384
2722
+ },
2723
+ {
2724
+ "epoch": 0.68,
2725
+ "grad_norm": 0.30114489793777466,
2726
+ "learning_rate": 0.00026480673457597733,
2727
+ "loss": 0.1083,
2728
+ "step": 385
2729
+ },
2730
+ {
2731
+ "epoch": 0.68,
2732
+ "grad_norm": 0.25989478826522827,
2733
+ "learning_rate": 0.00026462654684197487,
2734
+ "loss": 0.123,
2735
+ "step": 386
2736
+ },
2737
+ {
2738
+ "epoch": 0.68,
2739
+ "grad_norm": 0.14556318521499634,
2740
+ "learning_rate": 0.00026444596064770833,
2741
+ "loss": 0.121,
2742
+ "step": 387
2743
+ },
2744
+ {
2745
+ "epoch": 0.69,
2746
+ "grad_norm": 0.11710379272699356,
2747
+ "learning_rate": 0.0002642649766209242,
2748
+ "loss": 0.0585,
2749
+ "step": 388
2750
+ },
2751
+ {
2752
+ "epoch": 0.69,
2753
+ "grad_norm": 0.16899935901165009,
2754
+ "learning_rate": 0.000264083595390752,
2755
+ "loss": 0.0905,
2756
+ "step": 389
2757
+ },
2758
+ {
2759
+ "epoch": 0.69,
2760
+ "grad_norm": 0.14508718252182007,
2761
+ "learning_rate": 0.00026390181758770205,
2762
+ "loss": 0.0807,
2763
+ "step": 390
2764
+ },
2765
+ {
2766
+ "epoch": 0.69,
2767
+ "grad_norm": 0.3146648705005646,
2768
+ "learning_rate": 0.000263719643843663,
2769
+ "loss": 0.1388,
2770
+ "step": 391
2771
+ },
2772
+ {
2773
+ "epoch": 0.69,
2774
+ "grad_norm": 0.18293187022209167,
2775
+ "learning_rate": 0.0002635370747919002,
2776
+ "loss": 0.094,
2777
+ "step": 392
2778
+ },
2779
+ {
2780
+ "epoch": 0.7,
2781
+ "grad_norm": 0.1427004188299179,
2782
+ "learning_rate": 0.0002633541110670528,
2783
+ "loss": 0.0749,
2784
+ "step": 393
2785
+ },
2786
+ {
2787
+ "epoch": 0.7,
2788
+ "grad_norm": 0.2598584294319153,
2789
+ "learning_rate": 0.0002631707533051321,
2790
+ "loss": 0.1237,
2791
+ "step": 394
2792
+ },
2793
+ {
2794
+ "epoch": 0.7,
2795
+ "grad_norm": 0.19870835542678833,
2796
+ "learning_rate": 0.0002629870021435192,
2797
+ "loss": 0.0817,
2798
+ "step": 395
2799
+ },
2800
+ {
2801
+ "epoch": 0.7,
2802
+ "grad_norm": 0.2234540730714798,
2803
+ "learning_rate": 0.00026280285822096247,
2804
+ "loss": 0.1058,
2805
+ "step": 396
2806
+ },
2807
+ {
2808
+ "epoch": 0.7,
2809
+ "grad_norm": 0.1785740852355957,
2810
+ "learning_rate": 0.0002626183221775758,
2811
+ "loss": 0.0676,
2812
+ "step": 397
2813
+ },
2814
+ {
2815
+ "epoch": 0.7,
2816
+ "grad_norm": 0.11512486636638641,
2817
+ "learning_rate": 0.000262433394654836,
2818
+ "loss": 0.0893,
2819
+ "step": 398
2820
+ },
2821
+ {
2822
+ "epoch": 0.71,
2823
+ "grad_norm": 0.35373592376708984,
2824
+ "learning_rate": 0.00026224807629558094,
2825
+ "loss": 0.1077,
2826
+ "step": 399
2827
+ },
2828
+ {
2829
+ "epoch": 0.71,
2830
+ "grad_norm": 0.2722702920436859,
2831
+ "learning_rate": 0.0002620623677440068,
2832
+ "loss": 0.0925,
2833
+ "step": 400
2834
+ },
2835
+ {
2836
+ "epoch": 0.71,
2837
+ "grad_norm": 0.4532068073749542,
2838
+ "learning_rate": 0.0002618762696456664,
2839
+ "loss": 0.1217,
2840
+ "step": 401
2841
+ },
2842
+ {
2843
+ "epoch": 0.71,
2844
+ "grad_norm": 0.19945968687534332,
2845
+ "learning_rate": 0.0002616897826474666,
2846
+ "loss": 0.0899,
2847
+ "step": 402
2848
+ },
2849
+ {
2850
+ "epoch": 0.71,
2851
+ "grad_norm": 0.25592172145843506,
2852
+ "learning_rate": 0.00026150290739766606,
2853
+ "loss": 0.0519,
2854
+ "step": 403
2855
+ },
2856
+ {
2857
+ "epoch": 0.71,
2858
+ "grad_norm": 0.16839353740215302,
2859
+ "learning_rate": 0.00026131564454587314,
2860
+ "loss": 0.0814,
2861
+ "step": 404
2862
+ },
2863
+ {
2864
+ "epoch": 0.72,
2865
+ "grad_norm": 0.28912433981895447,
2866
+ "learning_rate": 0.0002611279947430436,
2867
+ "loss": 0.0737,
2868
+ "step": 405
2869
+ },
2870
+ {
2871
+ "epoch": 0.72,
2872
+ "grad_norm": 0.053034551441669464,
2873
+ "learning_rate": 0.0002609399586414782,
2874
+ "loss": 0.0157,
2875
+ "step": 406
2876
+ },
2877
+ {
2878
+ "epoch": 0.72,
2879
+ "grad_norm": 0.34488940238952637,
2880
+ "learning_rate": 0.0002607515368948206,
2881
+ "loss": 0.0951,
2882
+ "step": 407
2883
+ },
2884
+ {
2885
+ "epoch": 0.72,
2886
+ "grad_norm": 0.3413633704185486,
2887
+ "learning_rate": 0.00026056273015805494,
2888
+ "loss": 0.0712,
2889
+ "step": 408
2890
+ },
2891
+ {
2892
+ "epoch": 0.72,
2893
+ "grad_norm": 0.4603371024131775,
2894
+ "learning_rate": 0.0002603735390875039,
2895
+ "loss": 0.0946,
2896
+ "step": 409
2897
+ },
2898
+ {
2899
+ "epoch": 0.73,
2900
+ "grad_norm": 0.243332177400589,
2901
+ "learning_rate": 0.0002601839643408259,
2902
+ "loss": 0.041,
2903
+ "step": 410
2904
+ },
2905
+ {
2906
+ "epoch": 0.73,
2907
+ "grad_norm": 0.27589449286460876,
2908
+ "learning_rate": 0.0002599940065770131,
2909
+ "loss": 0.0841,
2910
+ "step": 411
2911
+ },
2912
+ {
2913
+ "epoch": 0.73,
2914
+ "grad_norm": 0.3786303997039795,
2915
+ "learning_rate": 0.0002598036664563893,
2916
+ "loss": 0.1031,
2917
+ "step": 412
2918
+ },
2919
+ {
2920
+ "epoch": 0.73,
2921
+ "grad_norm": 0.23370252549648285,
2922
+ "learning_rate": 0.00025961294464060716,
2923
+ "loss": 0.0509,
2924
+ "step": 413
2925
+ },
2926
+ {
2927
+ "epoch": 0.73,
2928
+ "grad_norm": 0.3785135746002197,
2929
+ "learning_rate": 0.00025942184179264635,
2930
+ "loss": 0.1116,
2931
+ "step": 414
2932
+ },
2933
+ {
2934
+ "epoch": 0.73,
2935
+ "grad_norm": 0.3081932067871094,
2936
+ "learning_rate": 0.0002592303585768111,
2937
+ "loss": 0.08,
2938
+ "step": 415
2939
+ },
2940
+ {
2941
+ "epoch": 0.74,
2942
+ "grad_norm": 0.13592147827148438,
2943
+ "learning_rate": 0.00025903849565872767,
2944
+ "loss": 0.0269,
2945
+ "step": 416
2946
+ },
2947
+ {
2948
+ "epoch": 0.74,
2949
+ "grad_norm": 0.29880547523498535,
2950
+ "learning_rate": 0.0002588462537053424,
2951
+ "loss": 0.0596,
2952
+ "step": 417
2953
+ },
2954
+ {
2955
+ "epoch": 0.74,
2956
+ "grad_norm": 0.11771093308925629,
2957
+ "learning_rate": 0.00025865363338491913,
2958
+ "loss": 0.0549,
2959
+ "step": 418
2960
+ },
2961
+ {
2962
+ "epoch": 0.74,
2963
+ "grad_norm": 0.2312057763338089,
2964
+ "learning_rate": 0.00025846063536703705,
2965
+ "loss": 0.0744,
2966
+ "step": 419
2967
+ },
2968
+ {
2969
+ "epoch": 0.74,
2970
+ "grad_norm": 0.33669716119766235,
2971
+ "learning_rate": 0.00025826726032258815,
2972
+ "loss": 0.059,
2973
+ "step": 420
2974
+ },
2975
+ {
2976
+ "epoch": 0.74,
2977
+ "grad_norm": 0.2426741123199463,
2978
+ "learning_rate": 0.00025807350892377513,
2979
+ "loss": 0.0996,
2980
+ "step": 421
2981
+ },
2982
+ {
2983
+ "epoch": 0.75,
2984
+ "grad_norm": 0.4019070863723755,
2985
+ "learning_rate": 0.000257879381844109,
2986
+ "loss": 0.0864,
2987
+ "step": 422
2988
+ },
2989
+ {
2990
+ "epoch": 0.75,
2991
+ "grad_norm": 0.09328150004148483,
2992
+ "learning_rate": 0.00025768487975840653,
2993
+ "loss": 0.0328,
2994
+ "step": 423
2995
+ },
2996
+ {
2997
+ "epoch": 0.75,
2998
+ "grad_norm": 0.40782174468040466,
2999
+ "learning_rate": 0.00025749000334278826,
3000
+ "loss": 0.0446,
3001
+ "step": 424
3002
+ },
3003
+ {
3004
+ "epoch": 0.75,
3005
+ "grad_norm": 0.21026232838630676,
3006
+ "learning_rate": 0.00025729475327467574,
3007
+ "loss": 0.096,
3008
+ "step": 425
3009
+ },
3010
+ {
3011
+ "epoch": 0.75,
3012
+ "grad_norm": 0.3340080678462982,
3013
+ "learning_rate": 0.00025709913023278967,
3014
+ "loss": 0.1243,
3015
+ "step": 426
3016
+ },
3017
+ {
3018
+ "epoch": 0.75,
3019
+ "eval_loss": 0.07237789034843445,
3020
+ "eval_runtime": 14.7609,
3021
+ "eval_samples_per_second": 32.315,
3022
+ "eval_steps_per_second": 8.13,
3023
+ "step": 426
3024
+ },
3025
+ {
3026
+ "epoch": 0.76,
3027
+ "grad_norm": 0.2728588879108429,
3028
+ "learning_rate": 0.00025690313489714706,
3029
+ "loss": 0.1162,
3030
+ "step": 427
3031
+ },
3032
+ {
3033
+ "epoch": 0.76,
3034
+ "grad_norm": 0.22674015164375305,
3035
+ "learning_rate": 0.00025670676794905915,
3036
+ "loss": 0.0822,
3037
+ "step": 428
3038
+ },
3039
+ {
3040
+ "epoch": 0.76,
3041
+ "grad_norm": 0.13643956184387207,
3042
+ "learning_rate": 0.0002565100300711289,
3043
+ "loss": 0.0652,
3044
+ "step": 429
3045
+ },
3046
+ {
3047
+ "epoch": 0.76,
3048
+ "grad_norm": 0.1212250292301178,
3049
+ "learning_rate": 0.0002563129219472488,
3050
+ "loss": 0.0515,
3051
+ "step": 430
3052
+ },
3053
+ {
3054
+ "epoch": 0.76,
3055
+ "grad_norm": 0.15632915496826172,
3056
+ "learning_rate": 0.0002561154442625983,
3057
+ "loss": 0.105,
3058
+ "step": 431
3059
+ },
3060
+ {
3061
+ "epoch": 0.76,
3062
+ "grad_norm": 0.14310358464717865,
3063
+ "learning_rate": 0.00025591759770364145,
3064
+ "loss": 0.078,
3065
+ "step": 432
3066
+ },
3067
+ {
3068
+ "epoch": 0.77,
3069
+ "grad_norm": 0.1461591273546219,
3070
+ "learning_rate": 0.00025571938295812475,
3071
+ "loss": 0.0626,
3072
+ "step": 433
3073
+ },
3074
+ {
3075
+ "epoch": 0.77,
3076
+ "grad_norm": 0.12564843893051147,
3077
+ "learning_rate": 0.00025552080071507423,
3078
+ "loss": 0.1015,
3079
+ "step": 434
3080
+ },
3081
+ {
3082
+ "epoch": 0.77,
3083
+ "grad_norm": 0.18360354006290436,
3084
+ "learning_rate": 0.00025532185166479384,
3085
+ "loss": 0.125,
3086
+ "step": 435
3087
+ },
3088
+ {
3089
+ "epoch": 0.77,
3090
+ "grad_norm": 0.26957467198371887,
3091
+ "learning_rate": 0.00025512253649886236,
3092
+ "loss": 0.1049,
3093
+ "step": 436
3094
+ },
3095
+ {
3096
+ "epoch": 0.77,
3097
+ "grad_norm": 0.18892253935337067,
3098
+ "learning_rate": 0.00025492285591013116,
3099
+ "loss": 0.0907,
3100
+ "step": 437
3101
+ },
3102
+ {
3103
+ "epoch": 0.77,
3104
+ "grad_norm": 0.25057581067085266,
3105
+ "learning_rate": 0.0002547228105927221,
3106
+ "loss": 0.1081,
3107
+ "step": 438
3108
+ },
3109
+ {
3110
+ "epoch": 0.78,
3111
+ "grad_norm": 0.13890071213245392,
3112
+ "learning_rate": 0.00025452240124202477,
3113
+ "loss": 0.0865,
3114
+ "step": 439
3115
+ },
3116
+ {
3117
+ "epoch": 0.78,
3118
+ "grad_norm": 0.17899222671985626,
3119
+ "learning_rate": 0.0002543216285546942,
3120
+ "loss": 0.0437,
3121
+ "step": 440
3122
+ },
3123
+ {
3124
+ "epoch": 0.78,
3125
+ "grad_norm": 0.26809147000312805,
3126
+ "learning_rate": 0.00025412049322864845,
3127
+ "loss": 0.0507,
3128
+ "step": 441
3129
+ },
3130
+ {
3131
+ "epoch": 0.78,
3132
+ "grad_norm": 0.19062833487987518,
3133
+ "learning_rate": 0.0002539189959630662,
3134
+ "loss": 0.0516,
3135
+ "step": 442
3136
+ },
3137
+ {
3138
+ "epoch": 0.78,
3139
+ "grad_norm": 0.23480018973350525,
3140
+ "learning_rate": 0.0002537171374583843,
3141
+ "loss": 0.0672,
3142
+ "step": 443
3143
+ },
3144
+ {
3145
+ "epoch": 0.79,
3146
+ "grad_norm": 0.10694094747304916,
3147
+ "learning_rate": 0.0002535149184162952,
3148
+ "loss": 0.0248,
3149
+ "step": 444
3150
+ },
3151
+ {
3152
+ "epoch": 0.79,
3153
+ "grad_norm": 0.2778875231742859,
3154
+ "learning_rate": 0.0002533123395397448,
3155
+ "loss": 0.1295,
3156
+ "step": 445
3157
+ },
3158
+ {
3159
+ "epoch": 0.79,
3160
+ "grad_norm": 0.30790090560913086,
3161
+ "learning_rate": 0.00025310940153292974,
3162
+ "loss": 0.0518,
3163
+ "step": 446
3164
+ },
3165
+ {
3166
+ "epoch": 0.79,
3167
+ "grad_norm": 0.2887485921382904,
3168
+ "learning_rate": 0.00025290610510129513,
3169
+ "loss": 0.0739,
3170
+ "step": 447
3171
+ },
3172
+ {
3173
+ "epoch": 0.79,
3174
+ "grad_norm": 0.3820766508579254,
3175
+ "learning_rate": 0.00025270245095153197,
3176
+ "loss": 0.0873,
3177
+ "step": 448
3178
+ },
3179
+ {
3180
+ "epoch": 0.79,
3181
+ "grad_norm": 0.09947656840085983,
3182
+ "learning_rate": 0.00025249843979157467,
3183
+ "loss": 0.0137,
3184
+ "step": 449
3185
+ },
3186
+ {
3187
+ "epoch": 0.8,
3188
+ "grad_norm": 0.2997414469718933,
3189
+ "learning_rate": 0.00025229407233059883,
3190
+ "loss": 0.1314,
3191
+ "step": 450
3192
+ },
3193
+ {
3194
+ "epoch": 0.8,
3195
+ "grad_norm": 0.24817639589309692,
3196
+ "learning_rate": 0.00025208934927901857,
3197
+ "loss": 0.1275,
3198
+ "step": 451
3199
+ },
3200
+ {
3201
+ "epoch": 0.8,
3202
+ "grad_norm": 0.28992751240730286,
3203
+ "learning_rate": 0.0002518842713484839,
3204
+ "loss": 0.1294,
3205
+ "step": 452
3206
+ },
3207
+ {
3208
+ "epoch": 0.8,
3209
+ "grad_norm": 0.20057415962219238,
3210
+ "learning_rate": 0.00025167883925187874,
3211
+ "loss": 0.0559,
3212
+ "step": 453
3213
+ },
3214
+ {
3215
+ "epoch": 0.8,
3216
+ "grad_norm": 0.18815775215625763,
3217
+ "learning_rate": 0.000251473053703318,
3218
+ "loss": 0.0922,
3219
+ "step": 454
3220
+ },
3221
+ {
3222
+ "epoch": 0.8,
3223
+ "grad_norm": 0.2501707375049591,
3224
+ "learning_rate": 0.00025126691541814514,
3225
+ "loss": 0.0712,
3226
+ "step": 455
3227
+ },
3228
+ {
3229
+ "epoch": 0.81,
3230
+ "grad_norm": 0.19835379719734192,
3231
+ "learning_rate": 0.00025106042511293005,
3232
+ "loss": 0.0974,
3233
+ "step": 456
3234
+ },
3235
+ {
3236
+ "epoch": 0.81,
3237
+ "grad_norm": 0.1476050615310669,
3238
+ "learning_rate": 0.0002508535835054661,
3239
+ "loss": 0.1005,
3240
+ "step": 457
3241
+ },
3242
+ {
3243
+ "epoch": 0.81,
3244
+ "grad_norm": 0.18511542677879333,
3245
+ "learning_rate": 0.0002506463913147679,
3246
+ "loss": 0.1343,
3247
+ "step": 458
3248
+ },
3249
+ {
3250
+ "epoch": 0.81,
3251
+ "grad_norm": 0.1092979907989502,
3252
+ "learning_rate": 0.0002504388492610687,
3253
+ "loss": 0.0728,
3254
+ "step": 459
3255
+ },
3256
+ {
3257
+ "epoch": 0.81,
3258
+ "grad_norm": 0.11496451497077942,
3259
+ "learning_rate": 0.00025023095806581797,
3260
+ "loss": 0.0949,
3261
+ "step": 460
3262
+ },
3263
+ {
3264
+ "epoch": 0.82,
3265
+ "grad_norm": 0.10526807606220245,
3266
+ "learning_rate": 0.0002500227184516789,
3267
+ "loss": 0.0874,
3268
+ "step": 461
3269
+ },
3270
+ {
3271
+ "epoch": 0.82,
3272
+ "grad_norm": 0.12002858519554138,
3273
+ "learning_rate": 0.0002498141311425258,
3274
+ "loss": 0.0597,
3275
+ "step": 462
3276
+ },
3277
+ {
3278
+ "epoch": 0.82,
3279
+ "grad_norm": 0.18872810900211334,
3280
+ "learning_rate": 0.00024960519686344164,
3281
+ "loss": 0.0938,
3282
+ "step": 463
3283
+ },
3284
+ {
3285
+ "epoch": 0.82,
3286
+ "grad_norm": 0.15304633975028992,
3287
+ "learning_rate": 0.0002493959163407154,
3288
+ "loss": 0.0942,
3289
+ "step": 464
3290
+ },
3291
+ {
3292
+ "epoch": 0.82,
3293
+ "grad_norm": 0.13661184906959534,
3294
+ "learning_rate": 0.0002491862903018398,
3295
+ "loss": 0.104,
3296
+ "step": 465
3297
+ },
3298
+ {
3299
+ "epoch": 0.82,
3300
+ "grad_norm": 0.12348087877035141,
3301
+ "learning_rate": 0.00024897631947550853,
3302
+ "loss": 0.0914,
3303
+ "step": 466
3304
+ },
3305
+ {
3306
+ "epoch": 0.83,
3307
+ "grad_norm": 0.17801643908023834,
3308
+ "learning_rate": 0.00024876600459161396,
3309
+ "loss": 0.1041,
3310
+ "step": 467
3311
+ },
3312
+ {
3313
+ "epoch": 0.83,
3314
+ "grad_norm": 0.16505847871303558,
3315
+ "learning_rate": 0.00024855534638124424,
3316
+ "loss": 0.0657,
3317
+ "step": 468
3318
+ },
3319
+ {
3320
+ "epoch": 0.83,
3321
+ "grad_norm": 0.17176857590675354,
3322
+ "learning_rate": 0.0002483443455766812,
3323
+ "loss": 0.0809,
3324
+ "step": 469
3325
+ },
3326
+ {
3327
+ "epoch": 0.83,
3328
+ "grad_norm": 0.20494180917739868,
3329
+ "learning_rate": 0.0002481330029113975,
3330
+ "loss": 0.0939,
3331
+ "step": 470
3332
+ },
3333
+ {
3334
+ "epoch": 0.83,
3335
+ "grad_norm": 0.08561734110116959,
3336
+ "learning_rate": 0.000247921319120054,
3337
+ "loss": 0.0316,
3338
+ "step": 471
3339
+ },
3340
+ {
3341
+ "epoch": 0.84,
3342
+ "grad_norm": 0.17116233706474304,
3343
+ "learning_rate": 0.0002477092949384977,
3344
+ "loss": 0.0593,
3345
+ "step": 472
3346
+ },
3347
+ {
3348
+ "epoch": 0.84,
3349
+ "grad_norm": 0.19205418229103088,
3350
+ "learning_rate": 0.00024749693110375854,
3351
+ "loss": 0.0684,
3352
+ "step": 473
3353
+ },
3354
+ {
3355
+ "epoch": 0.84,
3356
+ "grad_norm": 0.1300123929977417,
3357
+ "learning_rate": 0.0002472842283540473,
3358
+ "loss": 0.0581,
3359
+ "step": 474
3360
+ },
3361
+ {
3362
+ "epoch": 0.84,
3363
+ "grad_norm": 0.24078501760959625,
3364
+ "learning_rate": 0.0002470711874287529,
3365
+ "loss": 0.0483,
3366
+ "step": 475
3367
+ },
3368
+ {
3369
+ "epoch": 0.84,
3370
+ "grad_norm": 0.3071228861808777,
3371
+ "learning_rate": 0.00024685780906843975,
3372
+ "loss": 0.0961,
3373
+ "step": 476
3374
+ },
3375
+ {
3376
+ "epoch": 0.84,
3377
+ "grad_norm": 0.24373668432235718,
3378
+ "learning_rate": 0.0002466440940148452,
3379
+ "loss": 0.1139,
3380
+ "step": 477
3381
+ },
3382
+ {
3383
+ "epoch": 0.85,
3384
+ "grad_norm": 0.22678449749946594,
3385
+ "learning_rate": 0.00024643004301087715,
3386
+ "loss": 0.0324,
3387
+ "step": 478
3388
+ },
3389
+ {
3390
+ "epoch": 0.85,
3391
+ "grad_norm": 0.34472745656967163,
3392
+ "learning_rate": 0.00024621565680061117,
3393
+ "loss": 0.1041,
3394
+ "step": 479
3395
+ },
3396
+ {
3397
+ "epoch": 0.85,
3398
+ "grad_norm": 0.16587162017822266,
3399
+ "learning_rate": 0.0002460009361292881,
3400
+ "loss": 0.0992,
3401
+ "step": 480
3402
+ },
3403
+ {
3404
+ "epoch": 0.85,
3405
+ "grad_norm": 0.42953774333000183,
3406
+ "learning_rate": 0.0002457858817433115,
3407
+ "loss": 0.1284,
3408
+ "step": 481
3409
+ },
3410
+ {
3411
+ "epoch": 0.85,
3412
+ "grad_norm": 0.6054782867431641,
3413
+ "learning_rate": 0.00024557049439024486,
3414
+ "loss": 0.1034,
3415
+ "step": 482
3416
+ },
3417
+ {
3418
+ "epoch": 0.85,
3419
+ "grad_norm": 0.207829549908638,
3420
+ "learning_rate": 0.0002453547748188092,
3421
+ "loss": 0.0928,
3422
+ "step": 483
3423
+ },
3424
+ {
3425
+ "epoch": 0.86,
3426
+ "grad_norm": 0.36941850185394287,
3427
+ "learning_rate": 0.00024513872377888036,
3428
+ "loss": 0.0765,
3429
+ "step": 484
3430
+ },
3431
+ {
3432
+ "epoch": 0.86,
3433
+ "grad_norm": 0.20771794021129608,
3434
+ "learning_rate": 0.0002449223420214864,
3435
+ "loss": 0.1001,
3436
+ "step": 485
3437
+ },
3438
+ {
3439
+ "epoch": 0.86,
3440
+ "grad_norm": 0.16417552530765533,
3441
+ "learning_rate": 0.00024470563029880497,
3442
+ "loss": 0.0783,
3443
+ "step": 486
3444
+ },
3445
+ {
3446
+ "epoch": 0.86,
3447
+ "grad_norm": 0.12799693644046783,
3448
+ "learning_rate": 0.0002444885893641609,
3449
+ "loss": 0.0753,
3450
+ "step": 487
3451
+ },
3452
+ {
3453
+ "epoch": 0.86,
3454
+ "grad_norm": 0.21585993468761444,
3455
+ "learning_rate": 0.00024427121997202313,
3456
+ "loss": 0.1241,
3457
+ "step": 488
3458
+ },
3459
+ {
3460
+ "epoch": 0.87,
3461
+ "grad_norm": 0.1481488198041916,
3462
+ "learning_rate": 0.00024405352287800266,
3463
+ "loss": 0.1086,
3464
+ "step": 489
3465
+ },
3466
+ {
3467
+ "epoch": 0.87,
3468
+ "grad_norm": 0.18564724922180176,
3469
+ "learning_rate": 0.00024383549883884949,
3470
+ "loss": 0.0801,
3471
+ "step": 490
3472
+ },
3473
+ {
3474
+ "epoch": 0.87,
3475
+ "grad_norm": 0.16308890283107758,
3476
+ "learning_rate": 0.00024361714861245015,
3477
+ "loss": 0.0884,
3478
+ "step": 491
3479
+ },
3480
+ {
3481
+ "epoch": 0.87,
3482
+ "grad_norm": 0.10771831125020981,
3483
+ "learning_rate": 0.00024339847295782503,
3484
+ "loss": 0.0507,
3485
+ "step": 492
3486
+ },
3487
+ {
3488
+ "epoch": 0.87,
3489
+ "grad_norm": 0.11360620707273483,
3490
+ "learning_rate": 0.00024317947263512578,
3491
+ "loss": 0.0541,
3492
+ "step": 493
3493
+ },
3494
+ {
3495
+ "epoch": 0.87,
3496
+ "grad_norm": 0.17256328463554382,
3497
+ "learning_rate": 0.00024296014840563264,
3498
+ "loss": 0.0797,
3499
+ "step": 494
3500
+ },
3501
+ {
3502
+ "epoch": 0.88,
3503
+ "grad_norm": 0.14872509241104126,
3504
+ "learning_rate": 0.00024274050103175192,
3505
+ "loss": 0.098,
3506
+ "step": 495
3507
+ },
3508
+ {
3509
+ "epoch": 0.88,
3510
+ "grad_norm": 0.10749954730272293,
3511
+ "learning_rate": 0.00024252053127701297,
3512
+ "loss": 0.0629,
3513
+ "step": 496
3514
+ },
3515
+ {
3516
+ "epoch": 0.88,
3517
+ "grad_norm": 0.22221991419792175,
3518
+ "learning_rate": 0.00024230023990606608,
3519
+ "loss": 0.0737,
3520
+ "step": 497
3521
+ },
3522
+ {
3523
+ "epoch": 0.88,
3524
+ "grad_norm": 0.1851089596748352,
3525
+ "learning_rate": 0.00024207962768467927,
3526
+ "loss": 0.0961,
3527
+ "step": 498
3528
+ },
3529
+ {
3530
+ "epoch": 0.88,
3531
+ "grad_norm": 0.1685558706521988,
3532
+ "learning_rate": 0.0002418586953797361,
3533
+ "loss": 0.0863,
3534
+ "step": 499
3535
+ },
3536
+ {
3537
+ "epoch": 0.88,
3538
+ "grad_norm": 0.14281867444515228,
3539
+ "learning_rate": 0.00024163744375923268,
3540
+ "loss": 0.0334,
3541
+ "step": 500
3542
+ },
3543
+ {
3544
+ "epoch": 0.89,
3545
+ "grad_norm": 0.24673086404800415,
3546
+ "learning_rate": 0.00024141587359227513,
3547
+ "loss": 0.1468,
3548
+ "step": 501
3549
+ },
3550
+ {
3551
+ "epoch": 0.89,
3552
+ "grad_norm": 0.21355701982975006,
3553
+ "learning_rate": 0.00024119398564907685,
3554
+ "loss": 0.1145,
3555
+ "step": 502
3556
+ },
3557
+ {
3558
+ "epoch": 0.89,
3559
+ "grad_norm": 0.16007691621780396,
3560
+ "learning_rate": 0.00024097178070095598,
3561
+ "loss": 0.0799,
3562
+ "step": 503
3563
+ },
3564
+ {
3565
+ "epoch": 0.89,
3566
+ "grad_norm": 0.3183180093765259,
3567
+ "learning_rate": 0.0002407492595203326,
3568
+ "loss": 0.1405,
3569
+ "step": 504
3570
+ },
3571
+ {
3572
+ "epoch": 0.89,
3573
+ "grad_norm": 0.08811590075492859,
3574
+ "learning_rate": 0.0002405264228807259,
3575
+ "loss": 0.0359,
3576
+ "step": 505
3577
+ },
3578
+ {
3579
+ "epoch": 0.9,
3580
+ "grad_norm": 0.1502489596605301,
3581
+ "learning_rate": 0.0002403032715567519,
3582
+ "loss": 0.0763,
3583
+ "step": 506
3584
+ },
3585
+ {
3586
+ "epoch": 0.9,
3587
+ "grad_norm": 0.07442978769540787,
3588
+ "learning_rate": 0.00024007980632412032,
3589
+ "loss": 0.0365,
3590
+ "step": 507
3591
+ },
3592
+ {
3593
+ "epoch": 0.9,
3594
+ "grad_norm": 0.2458060383796692,
3595
+ "learning_rate": 0.00023985602795963227,
3596
+ "loss": 0.0724,
3597
+ "step": 508
3598
+ },
3599
+ {
3600
+ "epoch": 0.9,
3601
+ "grad_norm": 0.1589912623167038,
3602
+ "learning_rate": 0.0002396319372411771,
3603
+ "loss": 0.0701,
3604
+ "step": 509
3605
+ },
3606
+ {
3607
+ "epoch": 0.9,
3608
+ "grad_norm": 0.1447596549987793,
3609
+ "learning_rate": 0.00023940753494773018,
3610
+ "loss": 0.0411,
3611
+ "step": 510
3612
+ },
3613
+ {
3614
+ "epoch": 0.9,
3615
+ "grad_norm": 0.20220863819122314,
3616
+ "learning_rate": 0.00023918282185934984,
3617
+ "loss": 0.082,
3618
+ "step": 511
3619
+ },
3620
+ {
3621
+ "epoch": 0.91,
3622
+ "grad_norm": 0.08220729231834412,
3623
+ "learning_rate": 0.00023895779875717483,
3624
+ "loss": 0.0423,
3625
+ "step": 512
3626
+ },
3627
+ {
3628
+ "epoch": 0.91,
3629
+ "grad_norm": 0.18194489181041718,
3630
+ "learning_rate": 0.0002387324664234216,
3631
+ "loss": 0.058,
3632
+ "step": 513
3633
+ },
3634
+ {
3635
+ "epoch": 0.91,
3636
+ "grad_norm": 0.2533247470855713,
3637
+ "learning_rate": 0.00023850682564138142,
3638
+ "loss": 0.08,
3639
+ "step": 514
3640
+ },
3641
+ {
3642
+ "epoch": 0.91,
3643
+ "grad_norm": 0.4217647910118103,
3644
+ "learning_rate": 0.00023828087719541784,
3645
+ "loss": 0.1557,
3646
+ "step": 515
3647
+ },
3648
+ {
3649
+ "epoch": 0.91,
3650
+ "grad_norm": 0.1498800665140152,
3651
+ "learning_rate": 0.00023805462187096398,
3652
+ "loss": 0.0298,
3653
+ "step": 516
3654
+ },
3655
+ {
3656
+ "epoch": 0.91,
3657
+ "grad_norm": 0.1469077467918396,
3658
+ "learning_rate": 0.0002378280604545196,
3659
+ "loss": 0.0392,
3660
+ "step": 517
3661
+ },
3662
+ {
3663
+ "epoch": 0.92,
3664
+ "grad_norm": 0.23052054643630981,
3665
+ "learning_rate": 0.0002376011937336485,
3666
+ "loss": 0.1275,
3667
+ "step": 518
3668
+ },
3669
+ {
3670
+ "epoch": 0.92,
3671
+ "grad_norm": 0.2608712315559387,
3672
+ "learning_rate": 0.0002373740224969758,
3673
+ "loss": 0.0984,
3674
+ "step": 519
3675
+ },
3676
+ {
3677
+ "epoch": 0.92,
3678
+ "grad_norm": 0.3406033515930176,
3679
+ "learning_rate": 0.00023714654753418518,
3680
+ "loss": 0.1668,
3681
+ "step": 520
3682
+ },
3683
+ {
3684
+ "epoch": 0.92,
3685
+ "grad_norm": 0.1383407562971115,
3686
+ "learning_rate": 0.0002369187696360161,
3687
+ "loss": 0.0319,
3688
+ "step": 521
3689
+ },
3690
+ {
3691
+ "epoch": 0.92,
3692
+ "grad_norm": 0.2986023724079132,
3693
+ "learning_rate": 0.00023669068959426105,
3694
+ "loss": 0.0797,
3695
+ "step": 522
3696
+ },
3697
+ {
3698
+ "epoch": 0.93,
3699
+ "grad_norm": 0.18390725553035736,
3700
+ "learning_rate": 0.00023646230820176289,
3701
+ "loss": 0.0514,
3702
+ "step": 523
3703
+ },
3704
+ {
3705
+ "epoch": 0.93,
3706
+ "grad_norm": 0.3618876338005066,
3707
+ "learning_rate": 0.00023623362625241188,
3708
+ "loss": 0.1465,
3709
+ "step": 524
3710
+ },
3711
+ {
3712
+ "epoch": 0.93,
3713
+ "grad_norm": 0.23905062675476074,
3714
+ "learning_rate": 0.00023600464454114325,
3715
+ "loss": 0.0669,
3716
+ "step": 525
3717
+ },
3718
+ {
3719
+ "epoch": 0.93,
3720
+ "grad_norm": 0.24474327266216278,
3721
+ "learning_rate": 0.00023577536386393415,
3722
+ "loss": 0.1048,
3723
+ "step": 526
3724
+ },
3725
+ {
3726
+ "epoch": 0.93,
3727
+ "grad_norm": 0.11233604699373245,
3728
+ "learning_rate": 0.000235545785017801,
3729
+ "loss": 0.0653,
3730
+ "step": 527
3731
+ },
3732
+ {
3733
+ "epoch": 0.93,
3734
+ "grad_norm": 0.12456522136926651,
3735
+ "learning_rate": 0.0002353159088007966,
3736
+ "loss": 0.0855,
3737
+ "step": 528
3738
+ },
3739
+ {
3740
+ "epoch": 0.94,
3741
+ "grad_norm": 0.14804989099502563,
3742
+ "learning_rate": 0.00023508573601200764,
3743
+ "loss": 0.0554,
3744
+ "step": 529
3745
+ },
3746
+ {
3747
+ "epoch": 0.94,
3748
+ "grad_norm": 0.1283787339925766,
3749
+ "learning_rate": 0.00023485526745155167,
3750
+ "loss": 0.0644,
3751
+ "step": 530
3752
+ },
3753
+ {
3754
+ "epoch": 0.94,
3755
+ "grad_norm": 0.16255222260951996,
3756
+ "learning_rate": 0.00023462450392057436,
3757
+ "loss": 0.1088,
3758
+ "step": 531
3759
+ },
3760
+ {
3761
+ "epoch": 0.94,
3762
+ "grad_norm": 0.18897709250450134,
3763
+ "learning_rate": 0.0002343934462212467,
3764
+ "loss": 0.0673,
3765
+ "step": 532
3766
+ },
3767
+ {
3768
+ "epoch": 0.94,
3769
+ "grad_norm": 0.1460375338792801,
3770
+ "learning_rate": 0.00023416209515676235,
3771
+ "loss": 0.0923,
3772
+ "step": 533
3773
+ },
3774
+ {
3775
+ "epoch": 0.94,
3776
+ "grad_norm": 0.13687273859977722,
3777
+ "learning_rate": 0.0002339304515313348,
3778
+ "loss": 0.1142,
3779
+ "step": 534
3780
+ },
3781
+ {
3782
+ "epoch": 0.95,
3783
+ "grad_norm": 0.11255405843257904,
3784
+ "learning_rate": 0.00023369851615019432,
3785
+ "loss": 0.0513,
3786
+ "step": 535
3787
+ },
3788
+ {
3789
+ "epoch": 0.95,
3790
+ "grad_norm": 0.18131427466869354,
3791
+ "learning_rate": 0.0002334662898195856,
3792
+ "loss": 0.1058,
3793
+ "step": 536
3794
+ },
3795
+ {
3796
+ "epoch": 0.95,
3797
+ "grad_norm": 0.19648568332195282,
3798
+ "learning_rate": 0.0002332337733467646,
3799
+ "loss": 0.0721,
3800
+ "step": 537
3801
+ },
3802
+ {
3803
+ "epoch": 0.95,
3804
+ "grad_norm": 0.1530655175447464,
3805
+ "learning_rate": 0.00023300096753999582,
3806
+ "loss": 0.0698,
3807
+ "step": 538
3808
+ },
3809
+ {
3810
+ "epoch": 0.95,
3811
+ "grad_norm": 0.20368973910808563,
3812
+ "learning_rate": 0.00023276787320854965,
3813
+ "loss": 0.0925,
3814
+ "step": 539
3815
+ },
3816
+ {
3817
+ "epoch": 0.96,
3818
+ "grad_norm": 0.14580555260181427,
3819
+ "learning_rate": 0.00023253449116269936,
3820
+ "loss": 0.052,
3821
+ "step": 540
3822
+ },
3823
+ {
3824
+ "epoch": 0.96,
3825
+ "grad_norm": 0.20287400484085083,
3826
+ "learning_rate": 0.00023230082221371832,
3827
+ "loss": 0.0714,
3828
+ "step": 541
3829
+ },
3830
+ {
3831
+ "epoch": 0.96,
3832
+ "grad_norm": 0.2907051742076874,
3833
+ "learning_rate": 0.00023206686717387737,
3834
+ "loss": 0.1166,
3835
+ "step": 542
3836
+ },
3837
+ {
3838
+ "epoch": 0.96,
3839
+ "grad_norm": 0.3000693619251251,
3840
+ "learning_rate": 0.00023183262685644174,
3841
+ "loss": 0.1326,
3842
+ "step": 543
3843
+ },
3844
+ {
3845
+ "epoch": 0.96,
3846
+ "grad_norm": 0.0760418102145195,
3847
+ "learning_rate": 0.0002315981020756683,
3848
+ "loss": 0.0591,
3849
+ "step": 544
3850
+ },
3851
+ {
3852
+ "epoch": 0.96,
3853
+ "grad_norm": 0.144688680768013,
3854
+ "learning_rate": 0.00023136329364680284,
3855
+ "loss": 0.074,
3856
+ "step": 545
3857
+ },
3858
+ {
3859
+ "epoch": 0.97,
3860
+ "grad_norm": 0.14553490281105042,
3861
+ "learning_rate": 0.00023112820238607712,
3862
+ "loss": 0.0609,
3863
+ "step": 546
3864
+ },
3865
+ {
3866
+ "epoch": 0.97,
3867
+ "grad_norm": 0.13767151534557343,
3868
+ "learning_rate": 0.0002308928291107061,
3869
+ "loss": 0.0694,
3870
+ "step": 547
3871
+ },
3872
+ {
3873
+ "epoch": 0.97,
3874
+ "grad_norm": 0.1333126723766327,
3875
+ "learning_rate": 0.00023065717463888503,
3876
+ "loss": 0.0509,
3877
+ "step": 548
3878
+ },
3879
+ {
3880
+ "epoch": 0.97,
3881
+ "grad_norm": 0.1710643619298935,
3882
+ "learning_rate": 0.00023042123978978663,
3883
+ "loss": 0.0957,
3884
+ "step": 549
3885
+ },
3886
+ {
3887
+ "epoch": 0.97,
3888
+ "grad_norm": 0.14117231965065002,
3889
+ "learning_rate": 0.00023018502538355823,
3890
+ "loss": 0.0372,
3891
+ "step": 550
3892
+ },
3893
+ {
3894
+ "epoch": 0.97,
3895
+ "grad_norm": 0.24988646805286407,
3896
+ "learning_rate": 0.0002299485322413191,
3897
+ "loss": 0.0711,
3898
+ "step": 551
3899
+ },
3900
+ {
3901
+ "epoch": 0.98,
3902
+ "grad_norm": 0.225083127617836,
3903
+ "learning_rate": 0.00022971176118515731,
3904
+ "loss": 0.0913,
3905
+ "step": 552
3906
+ },
3907
+ {
3908
+ "epoch": 0.98,
3909
+ "grad_norm": 0.2095450758934021,
3910
+ "learning_rate": 0.00022947471303812704,
3911
+ "loss": 0.0485,
3912
+ "step": 553
3913
+ },
3914
+ {
3915
+ "epoch": 0.98,
3916
+ "grad_norm": 0.2737296521663666,
3917
+ "learning_rate": 0.0002292373886242456,
3918
+ "loss": 0.0643,
3919
+ "step": 554
3920
+ },
3921
+ {
3922
+ "epoch": 0.98,
3923
+ "grad_norm": 0.15709654986858368,
3924
+ "learning_rate": 0.0002289997887684908,
3925
+ "loss": 0.0327,
3926
+ "step": 555
3927
+ },
3928
+ {
3929
+ "epoch": 0.98,
3930
+ "grad_norm": 0.17161165177822113,
3931
+ "learning_rate": 0.00022876191429679785,
3932
+ "loss": 0.0356,
3933
+ "step": 556
3934
+ },
3935
+ {
3936
+ "epoch": 0.99,
3937
+ "grad_norm": 0.4428029954433441,
3938
+ "learning_rate": 0.00022852376603605656,
3939
+ "loss": 0.0976,
3940
+ "step": 557
3941
+ },
3942
+ {
3943
+ "epoch": 0.99,
3944
+ "grad_norm": 0.3834541440010071,
3945
+ "learning_rate": 0.00022828534481410845,
3946
+ "loss": 0.1103,
3947
+ "step": 558
3948
+ },
3949
+ {
3950
+ "epoch": 0.99,
3951
+ "grad_norm": 0.4154812693595886,
3952
+ "learning_rate": 0.00022804665145974396,
3953
+ "loss": 0.1864,
3954
+ "step": 559
3955
+ },
3956
+ {
3957
+ "epoch": 0.99,
3958
+ "grad_norm": 0.2642601430416107,
3959
+ "learning_rate": 0.0002278076868026995,
3960
+ "loss": 0.0944,
3961
+ "step": 560
3962
+ },
3963
+ {
3964
+ "epoch": 0.99,
3965
+ "grad_norm": 0.166983962059021,
3966
+ "learning_rate": 0.0002275684516736545,
3967
+ "loss": 0.0799,
3968
+ "step": 561
3969
+ },
3970
+ {
3971
+ "epoch": 0.99,
3972
+ "grad_norm": 0.1374656707048416,
3973
+ "learning_rate": 0.0002273289469042287,
3974
+ "loss": 0.0509,
3975
+ "step": 562
3976
+ },
3977
+ {
3978
+ "epoch": 1.0,
3979
+ "grad_norm": 0.12492585182189941,
3980
+ "learning_rate": 0.00022708917332697905,
3981
+ "loss": 0.0491,
3982
+ "step": 563
3983
+ },
3984
+ {
3985
+ "epoch": 1.0,
3986
+ "grad_norm": 0.0952799916267395,
3987
+ "learning_rate": 0.000226849131775397,
3988
+ "loss": 0.0561,
3989
+ "step": 564
3990
+ },
3991
+ {
3992
+ "epoch": 1.0,
3993
+ "grad_norm": 0.16703763604164124,
3994
+ "learning_rate": 0.00022660882308390544,
3995
+ "loss": 0.0882,
3996
+ "step": 565
3997
+ }
3998
+ ],
3999
+ "logging_steps": 1,
4000
+ "max_steps": 1695,
4001
+ "num_input_tokens_seen": 0,
4002
+ "num_train_epochs": 3,
4003
+ "save_steps": 565,
4004
+ "total_flos": 5.169945694856806e+16,
4005
+ "train_batch_size": 2,
4006
+ "trial_name": null,
4007
+ "trial_params": null
4008
+ }
checkpoint-565/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a5f5a3247deaa670d2445d5b7d23abcefeaaaa57a5c106b2b46878a93d61bd7
3
+ size 5752
checkpoint-565/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen1.5-7B",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "eos_token_id": 151643,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 4096,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_position_embeddings": 32768,
13
+ "max_window_layers": 28,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 32,
17
+ "num_key_value_heads": 32,
18
+ "quantization_config": {
19
+ "_load_in_4bit": false,
20
+ "_load_in_8bit": true,
21
+ "bnb_4bit_compute_dtype": "float32",
22
+ "bnb_4bit_quant_storage": "uint8",
23
+ "bnb_4bit_quant_type": "fp4",
24
+ "bnb_4bit_use_double_quant": false,
25
+ "llm_int8_enable_fp32_cpu_offload": false,
26
+ "llm_int8_has_fp16_weight": false,
27
+ "llm_int8_skip_modules": null,
28
+ "llm_int8_threshold": 6.0,
29
+ "load_in_4bit": false,
30
+ "load_in_8bit": true,
31
+ "quant_method": "bitsandbytes"
32
+ },
33
+ "rms_norm_eps": 1e-06,
34
+ "rope_theta": 1000000.0,
35
+ "sliding_window": 32768,
36
+ "tie_word_embeddings": false,
37
+ "torch_dtype": "bfloat16",
38
+ "transformers_version": "4.40.0.dev0",
39
+ "use_cache": false,
40
+ "use_sliding_window": false,
41
+ "vocab_size": 151936
42
+ }