Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,77 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
widget:
|
3 |
+
- text: "gelirken bir litre [MASK] aldım."
|
4 |
+
example_title: "Örnek 1"
|
5 |
---
|
6 |
+
|
7 |
+
# turkish-small-bert-uncased
|
8 |
+
|
9 |
+
This is a Turkish Small uncased BERT model, developed to fill the gap for small-sized BERT models for Turkish. Since this model is uncased: it does not make a difference between turkish and Turkish.
|
10 |
+
|
11 |
+
#### ⚠ Uncased use requires manual lowercase conversion
|
12 |
+
|
13 |
+
|
14 |
+
**Don't** use the `do_lower_case = True` flag with the tokenizer. Instead, convert your text to lower case as follows:
|
15 |
+
```python
|
16 |
+
text.replace("I", "ı").lower()
|
17 |
+
```
|
18 |
+
This is due to a [known issue](https://github.com/huggingface/transformers/issues/6680) with the tokenizer.
|
19 |
+
|
20 |
+
Be aware that this model may exhibit biased predictions as it was trained primarily on crawled data, which inherently can contain various biases.
|
21 |
+
|
22 |
+
Other relevant information can be found in the [paper](https://arxiv.org/abs/2307.14134).
|
23 |
+
|
24 |
+
|
25 |
+
## Example Usage
|
26 |
+
```python
|
27 |
+
from transformers import AutoTokenizer, BertForMaskedLM
|
28 |
+
from transformers import pipeline
|
29 |
+
|
30 |
+
model = BertForMaskedLM.from_pretrained("ytu-ce-cosmos/turkish-small-bert-uncased")
|
31 |
+
# or
|
32 |
+
# model = BertForMaskedLM.from_pretrained("ytu-ce-cosmos/turkish-small-bert-uncased", from_tf = True)
|
33 |
+
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained("ytu-ce-cosmos/turkish-small-bert-uncased")
|
35 |
+
|
36 |
+
unmasker = pipeline('fill-mask', model=model, tokenizer=tokenizer)
|
37 |
+
unmasker("gelirken bir litre [MASK] aldım.")
|
38 |
+
[{'score': 0.3692811131477356,
|
39 |
+
'token': 2417,
|
40 |
+
'token_str': 'su',
|
41 |
+
'sequence': 'gelirken bir litre su aldım.'},
|
42 |
+
{'score': 0.2551537752151489,
|
43 |
+
'token': 11818,
|
44 |
+
'token_str': 'benzin',
|
45 |
+
'sequence': 'gelirken bir litre benzin aldım.'},
|
46 |
+
{'score': 0.036265160888433456,
|
47 |
+
'token': 29480,
|
48 |
+
'token_str': 'mazot',
|
49 |
+
'sequence': 'gelirken bir litre mazot aldım.'},
|
50 |
+
{'score': 0.03350532799959183,
|
51 |
+
'token': 4521,
|
52 |
+
'token_str': 'süt',
|
53 |
+
'sequence': 'gelirken bir litre süt aldım.'},
|
54 |
+
{'score': 0.02558029256761074,
|
55 |
+
'token': 2168,
|
56 |
+
'token_str': 'daha',
|
57 |
+
'sequence': 'gelirken bir litre daha aldım.'}]
|
58 |
+
```
|
59 |
+
|
60 |
+
|
61 |
+
# Acknowledgments
|
62 |
+
- Research supported with Cloud TPUs from [Google's TensorFlow Research Cloud](https://sites.research.google/trc/about/) (TFRC). Thanks for providing access to the TFRC ❤️
|
63 |
+
- Thanks to the generous support from the Hugging Face team, it is possible to download models from their S3 storage 🤗
|
64 |
+
|
65 |
+
# Citations
|
66 |
+
```bibtex
|
67 |
+
@article{kesgin2023developing,
|
68 |
+
title={Developing and Evaluating Tiny to Medium-Sized Turkish BERT Models},
|
69 |
+
author={Kesgin, Himmet Toprak and Yuce, Muzaffer Kaan and Amasyali, Mehmet Fatih},
|
70 |
+
journal={arXiv preprint arXiv:2307.14134},
|
71 |
+
year={2023}
|
72 |
+
}
|
73 |
+
```
|
74 |
+
|
75 |
+
# License
|
76 |
+
|
77 |
+
MIT
|