atahanuz commited on
Commit
db22654
1 Parent(s): 5fd981d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +90 -172
README.md CHANGED
@@ -1,199 +1,117 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
 
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
35
 
36
- ## Uses
 
 
 
 
 
 
 
 
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
 
 
 
 
 
45
 
46
- ### Downstream Use [optional]
 
 
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
 
 
49
 
50
- [More Information Needed]
 
 
 
51
 
52
- ### Out-of-Scope Use
 
 
 
 
 
 
 
 
 
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
 
 
 
 
57
 
58
- ## Bias, Risks, and Limitations
 
 
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: llama3
3
+ language:
4
+ - tr
5
+ pipeline_tag: text-generation
6
+ base_model: meta-llama/Meta-Llama-3-8B
7
+ tags:
8
+ - Turkish
9
+ - turkish
10
+ - Llama
11
+ - Llama3
12
  ---
13
 
14
+ <img src="./cosmosLLaMa2_r2.png"/>
15
 
 
16
 
17
+ # Cosmos LLaMa Instruct
18
 
19
+ This model is a fully fine-tuned version of the "meta-llama/Meta-Llama-3-8B-Instruct" model with a 30GB Turkish dataset.
20
 
21
+ The Cosmos LLaMa Instruct is designed for text generation tasks, providing the ability to continue a given text snippet in a coherent and contextually relevant manner. Due to the diverse nature of the training data, which includes websites, books, and other text sources, this model can exhibit biases. Users should be aware of these biases and use the model responsibly.
22
 
 
23
 
24
+ #### Transformers pipeline
25
 
26
+ ```python
27
+ import transformers
28
+ import torch
29
 
30
+ model_id = "ytu-ce-cosmos/Turkish-Llama-8b-Instruct-v0.1"
 
 
 
 
 
 
31
 
32
+ pipeline = transformers.pipeline(
33
+ "text-generation",
34
+ model=model_id,
35
+ model_kwargs={"torch_dtype": torch.bfloat16},
36
+ device_map="auto",
37
+ )
38
 
39
+ messages = [
40
+ {"role": "system", "content": "Sen bir yapay zeka asistanısın. Kullanıcı sana bir görev verecek. Amacın görevi olabildiğince sadık bir şekilde tamamlamak. Görevi yerine getirirken adım adım düşün ve adımlarını gerekçelendir."},
41
+ {"role": "user", "content": "Soru: Bir arabanın deposu 60 litre benzin alabiliyor. Araba her 100 kilometrede 8 litre benzin tüketiyor. Depo tamamen doluyken araba kaç kilometre yol alabilir?"},
42
+ ]
43
 
44
+ terminators = [
45
+ pipeline.tokenizer.eos_token_id,
46
+ pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
47
+ ]
48
 
49
+ outputs = pipeline(
50
+ messages,
51
+ max_new_tokens=256,
52
+ eos_token_id=terminators,
53
+ do_sample=True,
54
+ temperature=0.6,
55
+ top_p=0.9,
56
+ )
57
+ print(outputs[0]["generated_text"][-1])
58
+ ```
59
 
60
+ #### Transformers AutoModelForCausalLM
61
 
62
+ ```python
63
+ from transformers import AutoTokenizer, AutoModelForCausalLM
64
+ import torch
65
 
66
+ model_id = "ytu-ce-cosmos/Turkish-Llama-8b-Instruct-v0.1"
67
 
68
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
69
+ model = AutoModelForCausalLM.from_pretrained(
70
+ model_id,
71
+ torch_dtype=torch.bfloat16,
72
+ device_map="auto",
73
+ )
74
 
75
+ messages = [
76
+ {"role": "system", "content": "Sen bir yapay zeka asistanısın. Kullanıcı sana bir görev verecek. Amacın görevi olabildiğince sadık bir şekilde tamamlamak. Görevi yerine getirirken adım adım düşün ve adımlarını gerekçelendir."},
77
+ {"role": "user", "content": "Soru: Bir arabanın deposu 60 litre benzin alabiliyor. Araba her 100 kilometrede 8 litre benzin tüketiyor. Depo tamamen doluyken araba kaç kilometre yol alabilir?"},
78
+ ]
79
 
80
+ input_ids = tokenizer.apply_chat_template(
81
+ messages,
82
+ add_generation_prompt=True,
83
+ return_tensors="pt"
84
+ ).to(model.device)
85
 
86
+ terminators = [
87
+ tokenizer.eos_token_id,
88
+ tokenizer.convert_tokens_to_ids("<|eot_id|>")
89
+ ]
90
 
91
+ outputs = model.generate(
92
+ input_ids,
93
+ max_new_tokens=256,
94
+ eos_token_id=terminators,
95
+ do_sample=True,
96
+ temperature=0.6,
97
+ top_p=0.9,
98
+ )
99
+ response = outputs[0][input_ids.shape[-1]:]
100
+ print(tokenizer.decode(response, skip_special_tokens=True))
101
+ ```
102
 
 
103
 
104
+ # Acknowledgments
105
+ - Thanks to the generous support from the Hugging Face team, it is possible to download models from their S3 storage 🤗
106
+ - Computing resources used in this work were provided by the National Center for High Performance Computing of Turkey (UHeM) under grant numbers 1016912023 and
107
+ 1018512024
108
+ - Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC)
109
 
110
+ ### Contact
111
+ COSMOS AI Research Group, Yildiz Technical University Computer Engineering Department <br>
112
+ https://cosmos.yildiz.edu.tr/ <br>
113
+ cosmos@yildiz.edu.tr
114
 
115
+ ---
116
+ license: llama3
117
+ ---