Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,117 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
|
|
|
10 |
|
|
|
11 |
|
12 |
-
|
13 |
|
14 |
-
### Model Description
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
35 |
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
|
39 |
|
40 |
-
|
|
|
|
|
41 |
|
42 |
-
|
43 |
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
|
|
|
|
|
|
|
47 |
|
48 |
-
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
|
|
|
|
|
|
|
51 |
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
|
56 |
-
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
|
|
|
|
|
|
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: llama3
|
3 |
+
language:
|
4 |
+
- tr
|
5 |
+
pipeline_tag: text-generation
|
6 |
+
base_model: meta-llama/Meta-Llama-3-8B
|
7 |
+
tags:
|
8 |
+
- Turkish
|
9 |
+
- turkish
|
10 |
+
- Llama
|
11 |
+
- Llama3
|
12 |
---
|
13 |
|
14 |
+
<img src="./cosmosLLaMa2_r2.png"/>
|
15 |
|
|
|
16 |
|
17 |
+
# Cosmos LLaMa Instruct
|
18 |
|
19 |
+
This model is a fully fine-tuned version of the "meta-llama/Meta-Llama-3-8B-Instruct" model with a 30GB Turkish dataset.
|
20 |
|
21 |
+
The Cosmos LLaMa Instruct is designed for text generation tasks, providing the ability to continue a given text snippet in a coherent and contextually relevant manner. Due to the diverse nature of the training data, which includes websites, books, and other text sources, this model can exhibit biases. Users should be aware of these biases and use the model responsibly.
|
22 |
|
|
|
23 |
|
24 |
+
#### Transformers pipeline
|
25 |
|
26 |
+
```python
|
27 |
+
import transformers
|
28 |
+
import torch
|
29 |
|
30 |
+
model_id = "ytu-ce-cosmos/Turkish-Llama-8b-Instruct-v0.1"
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
pipeline = transformers.pipeline(
|
33 |
+
"text-generation",
|
34 |
+
model=model_id,
|
35 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
36 |
+
device_map="auto",
|
37 |
+
)
|
38 |
|
39 |
+
messages = [
|
40 |
+
{"role": "system", "content": "Sen bir yapay zeka asistanısın. Kullanıcı sana bir görev verecek. Amacın görevi olabildiğince sadık bir şekilde tamamlamak. Görevi yerine getirirken adım adım düşün ve adımlarını gerekçelendir."},
|
41 |
+
{"role": "user", "content": "Soru: Bir arabanın deposu 60 litre benzin alabiliyor. Araba her 100 kilometrede 8 litre benzin tüketiyor. Depo tamamen doluyken araba kaç kilometre yol alabilir?"},
|
42 |
+
]
|
43 |
|
44 |
+
terminators = [
|
45 |
+
pipeline.tokenizer.eos_token_id,
|
46 |
+
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
47 |
+
]
|
48 |
|
49 |
+
outputs = pipeline(
|
50 |
+
messages,
|
51 |
+
max_new_tokens=256,
|
52 |
+
eos_token_id=terminators,
|
53 |
+
do_sample=True,
|
54 |
+
temperature=0.6,
|
55 |
+
top_p=0.9,
|
56 |
+
)
|
57 |
+
print(outputs[0]["generated_text"][-1])
|
58 |
+
```
|
59 |
|
60 |
+
#### Transformers AutoModelForCausalLM
|
61 |
|
62 |
+
```python
|
63 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
64 |
+
import torch
|
65 |
|
66 |
+
model_id = "ytu-ce-cosmos/Turkish-Llama-8b-Instruct-v0.1"
|
67 |
|
68 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
69 |
+
model = AutoModelForCausalLM.from_pretrained(
|
70 |
+
model_id,
|
71 |
+
torch_dtype=torch.bfloat16,
|
72 |
+
device_map="auto",
|
73 |
+
)
|
74 |
|
75 |
+
messages = [
|
76 |
+
{"role": "system", "content": "Sen bir yapay zeka asistanısın. Kullanıcı sana bir görev verecek. Amacın görevi olabildiğince sadık bir şekilde tamamlamak. Görevi yerine getirirken adım adım düşün ve adımlarını gerekçelendir."},
|
77 |
+
{"role": "user", "content": "Soru: Bir arabanın deposu 60 litre benzin alabiliyor. Araba her 100 kilometrede 8 litre benzin tüketiyor. Depo tamamen doluyken araba kaç kilometre yol alabilir?"},
|
78 |
+
]
|
79 |
|
80 |
+
input_ids = tokenizer.apply_chat_template(
|
81 |
+
messages,
|
82 |
+
add_generation_prompt=True,
|
83 |
+
return_tensors="pt"
|
84 |
+
).to(model.device)
|
85 |
|
86 |
+
terminators = [
|
87 |
+
tokenizer.eos_token_id,
|
88 |
+
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
89 |
+
]
|
90 |
|
91 |
+
outputs = model.generate(
|
92 |
+
input_ids,
|
93 |
+
max_new_tokens=256,
|
94 |
+
eos_token_id=terminators,
|
95 |
+
do_sample=True,
|
96 |
+
temperature=0.6,
|
97 |
+
top_p=0.9,
|
98 |
+
)
|
99 |
+
response = outputs[0][input_ids.shape[-1]:]
|
100 |
+
print(tokenizer.decode(response, skip_special_tokens=True))
|
101 |
+
```
|
102 |
|
|
|
103 |
|
104 |
+
# Acknowledgments
|
105 |
+
- Thanks to the generous support from the Hugging Face team, it is possible to download models from their S3 storage 🤗
|
106 |
+
- Computing resources used in this work were provided by the National Center for High Performance Computing of Turkey (UHeM) under grant numbers 1016912023 and
|
107 |
+
1018512024
|
108 |
+
- Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC)
|
109 |
|
110 |
+
### Contact
|
111 |
+
COSMOS AI Research Group, Yildiz Technical University Computer Engineering Department <br>
|
112 |
+
https://cosmos.yildiz.edu.tr/ <br>
|
113 |
+
cosmos@yildiz.edu.tr
|
114 |
|
115 |
+
---
|
116 |
+
license: llama3
|
117 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|