LN3Diff / nsr /losses /helpers.py
NIRVANALAN
release file
87c126b
from collections import namedtuple
from pdb import set_trace as st
import torch
import numpy as np
import torch.nn.functional as F
import torch.nn as nn
from torch.nn import Conv2d, BatchNorm2d, PReLU, ReLU, Sigmoid, MaxPool2d, AdaptiveAvgPool2d, Sequential, Module
"""
ArcFace implementation from [TreB1eN](https://github.com/TreB1eN/InsightFace_Pytorch)
"""
# from nsr.networks_stylegan2 import FullyConnectedLayer as EqualLinear
# class GradualStyleBlock(Module):
# def __init__(self, in_c, out_c, spatial):
# super(GradualStyleBlock, self).__init__()
# self.out_c = out_c
# self.spatial = spatial
# num_pools = int(np.log2(spatial))
# modules = []
# modules += [
# Conv2d(in_c, out_c, kernel_size=3, stride=2, padding=1),
# nn.LeakyReLU()
# ]
# for i in range(num_pools - 1):
# modules += [
# Conv2d(out_c, out_c, kernel_size=3, stride=2, padding=1),
# nn.LeakyReLU()
# ]
# self.convs = nn.Sequential(*modules)
# self.linear = EqualLinear(out_c, out_c, lr_multiplier=1)
# def forward(self, x):
# x = self.convs(x)
# x = x.reshape(-1, self.out_c)
# x = self.linear(x)
# return x
# from project.models.model import ModulatedConv2d
class DemodulatedConv2d(nn.Module):
def __init__(self,
in_channel,
out_channel,
kernel_size=3,
stride=1,
padding=0,
bias=False,
dilation=1):
super().__init__()
# https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/411. fix droplet issue
self.eps = 1e-8
if not isinstance(kernel_size, tuple):
self.kernel_size = (kernel_size, kernel_size)
else:
self.kernel_size = kernel_size
self.in_channel = in_channel
self.out_channel = out_channel
self.weight = nn.Parameter(
# torch.randn(1, out_channel, in_channel, kernel_size, kernel_size)
torch.randn(1, out_channel, in_channel, *kernel_size))
self.bias = None
if bias:
self.bias = nn.Parameter(torch.randn(out_channel))
self.stride = stride
self.padding = padding
self.dilation = dilation
def forward(self, input):
batch, in_channel, height, width = input.shape
demod = torch.rsqrt(self.weight.pow(2).sum([2, 3, 4]) + 1e-8)
demod = demod.repeat_interleave(batch, 0)
weight = self.weight * demod.view(batch, self.out_channel, 1, 1, 1)
weight = weight.view(
# batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size
batch * self.out_channel,
in_channel,
*self.kernel_size)
input = input.view(1, batch * in_channel, height, width)
if self.bias is None:
out = F.conv2d(input,
weight,
padding=self.padding,
groups=batch,
dilation=self.dilation,
stride=self.stride)
else:
out = F.conv2d(input,
weight,
bias=self.bias,
padding=self.padding,
groups=batch,
dilation=self.dilation,
stride=self.stride)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
return out
class Flatten(Module):
def forward(self, input):
return input.reshape(input.size(0), -1)
def l2_norm(input, axis=1):
norm = torch.norm(input, 2, axis, True)
output = torch.div(input, norm)
return output
class Bottleneck(namedtuple('Block', ['in_channel', 'depth', 'stride'])):
""" A named tuple describing a ResNet block. """
def get_block(in_channel, depth, num_units, stride=2):
return [Bottleneck(in_channel, depth, stride)
] + [Bottleneck(depth, depth, 1) for i in range(num_units - 1)]
def get_blocks(num_layers):
if num_layers == 50:
blocks = [
get_block(in_channel=64, depth=64, num_units=3),
get_block(in_channel=64, depth=128, num_units=4),
get_block(in_channel=128, depth=256, num_units=14),
get_block(in_channel=256, depth=512, num_units=3)
]
elif num_layers == 100:
blocks = [
get_block(in_channel=64, depth=64, num_units=3),
get_block(in_channel=64, depth=128, num_units=13),
get_block(in_channel=128, depth=256, num_units=30),
get_block(in_channel=256, depth=512, num_units=3)
]
elif num_layers == 152:
blocks = [
get_block(in_channel=64, depth=64, num_units=3),
get_block(in_channel=64, depth=128, num_units=8),
get_block(in_channel=128, depth=256, num_units=36),
get_block(in_channel=256, depth=512, num_units=3)
]
else:
raise ValueError(
"Invalid number of layers: {}. Must be one of [50, 100, 152]".
format(num_layers))
return blocks
class SEModule(Module):
def __init__(self, channels, reduction):
super(SEModule, self).__init__()
self.avg_pool = AdaptiveAvgPool2d(1)
self.fc1 = Conv2d(channels,
channels // reduction,
kernel_size=1,
padding=0,
bias=False)
self.relu = ReLU(inplace=True)
self.fc2 = Conv2d(channels // reduction,
channels,
kernel_size=1,
padding=0,
bias=False)
self.sigmoid = Sigmoid()
def forward(self, x):
module_input = x
x = self.avg_pool(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.sigmoid(x)
return module_input * x
class bottleneck_IR(Module):
def __init__(self,
in_channel,
depth,
stride,
norm_layer=None,
demodulate=False):
super(bottleneck_IR, self).__init__()
if norm_layer is None:
norm_layer = BatchNorm2d
if demodulate:
conv2d = DemodulatedConv2d
else:
conv2d = Conv2d
if in_channel == depth:
self.shortcut_layer = MaxPool2d(1, stride)
else:
self.shortcut_layer = Sequential(
# Conv2d(in_channel, depth, (1, 1), stride, bias=False),
conv2d(in_channel, depth, (1, 1), stride, bias=False),
norm_layer(depth))
# BatchNorm2d(depth)
self.res_layer = Sequential(
# BatchNorm2d(in_channel),
norm_layer(in_channel),
# Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False),
conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False),
PReLU(depth),
# Conv2d(depth, depth, (3, 3), stride, 1, bias=False),
conv2d(depth, depth, (3, 3), stride, 1, bias=False),
norm_layer(depth))
# BatchNorm2d(depth))
def forward(self, x):
shortcut = self.shortcut_layer(x)
res = self.res_layer(x)
return res + shortcut
class bottleneck_IR_SE(Module):
def __init__(self, in_channel, depth, stride):
super(bottleneck_IR_SE, self).__init__()
if in_channel == depth:
self.shortcut_layer = MaxPool2d(1, stride)
else:
self.shortcut_layer = Sequential(
Conv2d(in_channel, depth, (1, 1), stride, bias=False),
BatchNorm2d(depth))
self.res_layer = Sequential(
BatchNorm2d(in_channel),
Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False),
PReLU(depth), Conv2d(depth, depth, (3, 3), stride, 1, bias=False),
BatchNorm2d(depth), SEModule(depth, 16))
def forward(self, x):
shortcut = self.shortcut_layer(x)
res = self.res_layer(x)
return res + shortcut
def _upsample_add(x, y):
"""Upsample and add two feature maps.
Args:
x: (Variable) top feature map to be upsampled.
y: (Variable) lateral feature map.
Returns:
(Variable) added feature map.
Note in PyTorch, when input size is odd, the upsampled feature map
with `F.upsample(..., scale_factor=2, mode='nearest')`
maybe not equal to the lateral feature map size.
e.g.
original input size: [N,_,15,15] ->
conv2d feature map size: [N,_,8,8] ->
upsampled feature map size: [N,_,16,16]
So we choose bilinear upsample which supports arbitrary output sizes.
"""
_, _, H, W = y.size()
return F.interpolate(x, size=(H, W), mode='bilinear',
align_corners=True) + y
# from NeuRay
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes,
out_planes,
kernel_size=3,
stride=stride,
padding=dilation,
groups=groups,
bias=False,
dilation=dilation,
padding_mode='reflect')
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes,
out_planes,
kernel_size=1,
stride=stride,
bias=False,
padding_mode='reflect')
class ResidualBlock(nn.Module):
def __init__(self,
dim_in,
dim_out,
dim_inter=None,
use_norm=True,
norm_layer=nn.BatchNorm2d,
bias=False):
super().__init__()
if dim_inter is None:
dim_inter = dim_out
if use_norm:
self.conv = nn.Sequential(
norm_layer(dim_in),
nn.ReLU(True),
nn.Conv2d(dim_in,
dim_inter,
3,
1,
1,
bias=bias,
padding_mode='reflect'),
norm_layer(dim_inter),
nn.ReLU(True),
nn.Conv2d(dim_inter,
dim_out,
3,
1,
1,
bias=bias,
padding_mode='reflect'),
)
else:
self.conv = nn.Sequential(
nn.ReLU(True),
nn.Conv2d(dim_in, dim_inter, 3, 1, 1),
nn.ReLU(True),
nn.Conv2d(dim_inter, dim_out, 3, 1, 1),
)
self.short_cut = None
if dim_in != dim_out:
self.short_cut = nn.Conv2d(dim_in, dim_out, 1, 1)
def forward(self, feats):
feats_out = self.conv(feats)
if self.short_cut is not None:
feats_out = self.short_cut(feats) + feats_out
else:
feats_out = feats_out + feats
return feats_out
class conv(nn.Module):
def __init__(self, num_in_layers, num_out_layers, kernel_size, stride):
super(conv, self).__init__()
self.kernel_size = kernel_size
self.conv = nn.Conv2d(num_in_layers,
num_out_layers,
kernel_size=kernel_size,
stride=stride,
padding=(self.kernel_size - 1) // 2,
padding_mode='reflect')
self.bn = nn.InstanceNorm2d(num_out_layers,
track_running_stats=False,
affine=True)
def forward(self, x):
return F.elu(self.bn(self.conv(x)), inplace=True)
class upconv(nn.Module):
def __init__(self, num_in_layers, num_out_layers, kernel_size, scale):
super(upconv, self).__init__()
self.scale = scale
self.conv = conv(num_in_layers, num_out_layers, kernel_size, 1)
def forward(self, x):
x = nn.functional.interpolate(x,
scale_factor=self.scale,
align_corners=True,
mode='bilinear')
return self.conv(x)