|
from numpy import sqrt |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
import numpy as np |
|
from typing import Tuple, Literal |
|
from functools import partial |
|
|
|
from pdb import set_trace as st |
|
|
|
|
|
from vit.vision_transformer import MemEffAttention |
|
|
|
|
|
class MVAttention(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
num_heads: int = 8, |
|
qkv_bias: bool = False, |
|
proj_bias: bool = True, |
|
attn_drop: float = 0.0, |
|
proj_drop: float = 0.0, |
|
groups: int = 32, |
|
eps: float = 1e-5, |
|
residual: bool = True, |
|
skip_scale: float = 1, |
|
num_frames: int = 4, |
|
): |
|
super().__init__() |
|
|
|
self.residual = residual |
|
self.skip_scale = skip_scale |
|
self.num_frames = num_frames |
|
|
|
self.norm = nn.GroupNorm(num_groups=groups, |
|
num_channels=dim, |
|
eps=eps, |
|
affine=True) |
|
self.attn = MemEffAttention(dim, num_heads, qkv_bias, proj_bias, |
|
attn_drop, proj_drop) |
|
|
|
def forward(self, x): |
|
|
|
BV, C, H, W = x.shape |
|
B = BV // self.num_frames |
|
|
|
res = x |
|
x = self.norm(x) |
|
|
|
x = x.reshape(B, self.num_frames, C, H, |
|
W).permute(0, 1, 3, 4, 2).reshape(B, -1, C) |
|
x = self.attn(x) |
|
x = x.reshape(B, self.num_frames, H, W, |
|
C).permute(0, 1, 4, 2, 3).reshape(BV, C, H, W) |
|
|
|
if self.residual: |
|
x = (x + res) * self.skip_scale |
|
return x |
|
|
|
|
|
class ResnetBlock(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
resample: Literal['default', 'up', 'down'] = 'default', |
|
groups: int = 32, |
|
eps: float = 1e-5, |
|
skip_scale: float = 1, |
|
): |
|
super().__init__() |
|
|
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.skip_scale = skip_scale |
|
|
|
self.norm1 = nn.GroupNorm(num_groups=groups, |
|
num_channels=in_channels, |
|
eps=eps, |
|
affine=True) |
|
self.conv1 = nn.Conv2d(in_channels, |
|
out_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
|
|
self.norm2 = nn.GroupNorm(num_groups=groups, |
|
num_channels=out_channels, |
|
eps=eps, |
|
affine=True) |
|
self.conv2 = nn.Conv2d(out_channels, |
|
out_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
|
|
self.act = F.silu |
|
|
|
self.resample = None |
|
if resample == 'up': |
|
self.resample = partial(F.interpolate, |
|
scale_factor=2.0, |
|
mode="nearest") |
|
elif resample == 'down': |
|
self.resample = nn.AvgPool2d(kernel_size=2, stride=2) |
|
|
|
self.shortcut = nn.Identity() |
|
if self.in_channels != self.out_channels: |
|
self.shortcut = nn.Conv2d(in_channels, |
|
out_channels, |
|
kernel_size=1, |
|
bias=True) |
|
|
|
def forward(self, x): |
|
res = x |
|
|
|
x = self.norm1(x) |
|
x = self.act(x) |
|
|
|
if self.resample: |
|
res = self.resample(res) |
|
x = self.resample(x) |
|
|
|
x = self.conv1(x) |
|
x = self.norm2(x) |
|
x = self.act(x) |
|
x = self.conv2(x) |
|
|
|
x = (x + self.shortcut(res)) * self.skip_scale |
|
|
|
return x |
|
|
|
|
|
class DownBlock(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
num_layers: int = 1, |
|
downsample: bool = True, |
|
attention: bool = True, |
|
attention_heads: int = 16, |
|
skip_scale: float = 1, |
|
): |
|
super().__init__() |
|
|
|
nets = [] |
|
attns = [] |
|
for i in range(num_layers): |
|
in_channels = in_channels if i == 0 else out_channels |
|
nets.append( |
|
ResnetBlock(in_channels, out_channels, skip_scale=skip_scale)) |
|
if attention: |
|
attns.append( |
|
MVAttention(out_channels, |
|
attention_heads, |
|
skip_scale=skip_scale)) |
|
else: |
|
attns.append(None) |
|
self.nets = nn.ModuleList(nets) |
|
self.attns = nn.ModuleList(attns) |
|
|
|
self.downsample = None |
|
if downsample: |
|
self.downsample = nn.Conv2d(out_channels, |
|
out_channels, |
|
kernel_size=3, |
|
stride=2, |
|
padding=1) |
|
|
|
def forward(self, x): |
|
xs = [] |
|
|
|
for attn, net in zip(self.attns, self.nets): |
|
x = net(x) |
|
if attn: |
|
x = attn(x) |
|
xs.append(x) |
|
|
|
if self.downsample: |
|
x = self.downsample(x) |
|
xs.append(x) |
|
|
|
return x, xs |
|
|
|
|
|
class MidBlock(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
num_layers: int = 1, |
|
attention: bool = True, |
|
attention_heads: int = 16, |
|
skip_scale: float = 1, |
|
): |
|
super().__init__() |
|
|
|
nets = [] |
|
attns = [] |
|
|
|
nets.append( |
|
ResnetBlock(in_channels, in_channels, skip_scale=skip_scale)) |
|
|
|
for i in range(num_layers): |
|
nets.append( |
|
ResnetBlock(in_channels, in_channels, skip_scale=skip_scale)) |
|
if attention: |
|
attns.append( |
|
MVAttention(in_channels, |
|
attention_heads, |
|
skip_scale=skip_scale)) |
|
else: |
|
attns.append(None) |
|
self.nets = nn.ModuleList(nets) |
|
self.attns = nn.ModuleList(attns) |
|
|
|
def forward(self, x): |
|
x = self.nets[0](x) |
|
for attn, net in zip(self.attns, self.nets[1:]): |
|
if attn: |
|
x = attn(x) |
|
x = net(x) |
|
return x |
|
|
|
|
|
class UpBlock(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
prev_out_channels: int, |
|
out_channels: int, |
|
num_layers: int = 1, |
|
upsample: bool = True, |
|
attention: bool = True, |
|
attention_heads: int = 16, |
|
skip_scale: float = 1, |
|
): |
|
super().__init__() |
|
|
|
nets = [] |
|
attns = [] |
|
for i in range(num_layers): |
|
cin = in_channels if i == 0 else out_channels |
|
cskip = prev_out_channels if (i == num_layers - |
|
1) else out_channels |
|
|
|
nets.append( |
|
ResnetBlock(cin + cskip, out_channels, skip_scale=skip_scale)) |
|
if attention: |
|
attns.append( |
|
MVAttention(out_channels, |
|
attention_heads, |
|
skip_scale=skip_scale)) |
|
else: |
|
attns.append(None) |
|
self.nets = nn.ModuleList(nets) |
|
self.attns = nn.ModuleList(attns) |
|
|
|
self.upsample = None |
|
if upsample: |
|
self.upsample = nn.Conv2d(out_channels, |
|
out_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
|
|
def forward(self, x, xs): |
|
|
|
for attn, net in zip(self.attns, self.nets): |
|
res_x = xs[-1] |
|
xs = xs[:-1] |
|
x = torch.cat([x, res_x], dim=1) |
|
x = net(x) |
|
if attn: |
|
x = attn(x) |
|
|
|
if self.upsample: |
|
x = F.interpolate(x, scale_factor=2.0, mode='nearest') |
|
x = self.upsample(x) |
|
|
|
return x |
|
|
|
|
|
|
|
class MVUNet(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
in_channels: int = 3, |
|
out_channels: int = 3, |
|
down_channels: Tuple[int, ...] = (64, 128, 256, 512, 1024), |
|
down_attention: Tuple[bool, |
|
...] = (False, False, False, True, True), |
|
mid_attention: bool = True, |
|
up_channels: Tuple[int, ...] = (1024, 512, 256), |
|
up_attention: Tuple[bool, ...] = (True, True, False), |
|
layers_per_block: int = 2, |
|
skip_scale: float = np.sqrt(0.5), |
|
): |
|
super().__init__() |
|
|
|
|
|
self.conv_in = nn.Conv2d(in_channels, |
|
down_channels[0], |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
|
|
|
|
down_blocks = [] |
|
cout = down_channels[0] |
|
for i in range(len(down_channels)): |
|
cin = cout |
|
cout = down_channels[i] |
|
|
|
down_blocks.append( |
|
DownBlock( |
|
cin, |
|
cout, |
|
num_layers=layers_per_block, |
|
downsample=(i |
|
!= len(down_channels) - 1), |
|
attention=down_attention[i], |
|
skip_scale=skip_scale, |
|
)) |
|
self.down_blocks = nn.ModuleList(down_blocks) |
|
|
|
|
|
self.mid_block = MidBlock(down_channels[-1], |
|
attention=mid_attention, |
|
skip_scale=skip_scale) |
|
|
|
|
|
up_blocks = [] |
|
cout = up_channels[0] |
|
for i in range(len(up_channels)): |
|
cin = cout |
|
cout = up_channels[i] |
|
cskip = down_channels[max(-2 - i, |
|
-len(down_channels))] |
|
|
|
up_blocks.append( |
|
UpBlock( |
|
cin, |
|
cskip, |
|
cout, |
|
num_layers=layers_per_block + 1, |
|
upsample=(i != len(up_channels) - 1), |
|
attention=up_attention[i], |
|
skip_scale=skip_scale, |
|
)) |
|
self.up_blocks = nn.ModuleList(up_blocks) |
|
|
|
|
|
self.norm_out = nn.GroupNorm(num_channels=up_channels[-1], |
|
num_groups=32, |
|
eps=1e-5) |
|
self.conv_out = nn.Conv2d(up_channels[-1], |
|
out_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
|
|
def forward(self, x): |
|
|
|
|
|
|
|
x = self.conv_in(x) |
|
|
|
|
|
xss = [x] |
|
for block in self.down_blocks: |
|
x, xs = block(x) |
|
xss.extend(xs) |
|
|
|
|
|
x = self.mid_block(x) |
|
|
|
|
|
for block in self.up_blocks: |
|
xs = xss[-len(block.nets):] |
|
xss = xss[:-len(block.nets)] |
|
x = block(x, xs) |
|
|
|
|
|
x = self.norm_out(x) |
|
x = F.silu(x) |
|
x = self.conv_out(x) |
|
|
|
return x |
|
|
|
|
|
class LGM_MVEncoder(MVUNet): |
|
|
|
def __init__( |
|
self, |
|
in_channels: int = 3, |
|
out_channels: int = 3, |
|
down_channels: Tuple[int] = (64, 128, 256, 512, 1024), |
|
down_attention: Tuple[bool] = (False, False, False, True, True), |
|
mid_attention: bool = True, |
|
up_channels: Tuple[int] = (1024, 512, 256), |
|
up_attention: Tuple[bool] = (True, True, False), |
|
layers_per_block: int = 2, |
|
skip_scale: float = np.sqrt(0.5), |
|
z_channels=4, |
|
double_z=True, |
|
add_fusion_layer=True, |
|
): |
|
super().__init__(in_channels, out_channels, down_channels, |
|
down_attention, mid_attention, up_channels, |
|
up_attention, layers_per_block, skip_scale) |
|
del self.up_blocks |
|
|
|
self.conv_out = torch.nn.Conv2d(up_channels[0], |
|
2 * |
|
z_channels if double_z else z_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
if add_fusion_layer: |
|
self.fusion_layer = torch.nn.Conv2d( |
|
2 * z_channels * 4 if double_z else z_channels * 4, |
|
2 * z_channels if double_z else z_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
|
|
self.num_frames = 4 |
|
|
|
def forward(self, x): |
|
|
|
x = self.conv_in(x) |
|
|
|
|
|
xss = [x] |
|
for block in self.down_blocks: |
|
x, xs = block(x) |
|
xss.extend(xs) |
|
|
|
|
|
x = self.mid_block(x) |
|
|
|
|
|
x = x.chunk(x.shape[0] // self.num_frames) |
|
|
|
x = [self.fusion_layer(torch.cat(feat.chunk(feat.shape[0]), dim=1)) for feat in x] |
|
st() |
|
return torch.cat(x, dim=0) |