|
# T5-base data to text model specialized for Finance NLG |
|
|
|
__simple version__ |
|
|
|
This model was trained on a limited number of indicators, values and dates |
|
|
|
---- |
|
## Usage (HuggingFace Transformers) |
|
|
|
|
|
|
|
#### Call the model |
|
|
|
```python |
|
|
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("yseop/FNP_T5_D2T_simple") |
|
|
|
model = AutoModelForSeq2SeqLM.from_pretrained("yseop/FNP_T5_D2T_simple") |
|
|
|
|
|
text = ["Group profit | valIs | $ 10 && € $10 | dTime | in 2019"] |
|
|
|
``` |
|
#### Choose a generation method |
|
|
|
```python |
|
|
|
|
|
input_ids = tokenizer.encode(": {}".format(text), return_tensors="pt") |
|
p=0.72 |
|
k=40 |
|
|
|
outputs = model.generate(input_ids, |
|
do_sample=True, |
|
top_p=p, |
|
top_k=k, |
|
early_stopping=True) |
|
|
|
print(tokenizer.decode(outputs[0])) |
|
|
|
``` |
|
|
|
|
|
|
|
```python |
|
|
|
input_ids = tokenizer.encode(": {}".format(text), return_tensors="pt") |
|
|
|
outputs = model.generate(input_ids, |
|
max_length=200, |
|
num_beams=2, repetition_penalty=2.5, |
|
top_k=50, top_p=0.98, |
|
length_penalty=1.0, |
|
early_stopping=True) |
|
|
|
print(tokenizer.decode(outputs[0])) |
|
|
|
|
|
``` |
|
|
|
|
|
|
|
|
|
**Created by:** [Yseop](https://www.yseop.com/) | Pioneer in Natural Language Generation (NLG) technology. Scaling human expertise through Natural Language Generation. |