younggi's picture
update model card README.md
0f95c0b
|
raw
history blame
4.45 kB
metadata
license: cc-by-nc-4.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: videomae-base-finetuned-ucf101-subset
    results: []

videomae-base-finetuned-ucf101-subset

This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2483
  • Accuracy: 0.9432

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 3750

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.3832 0.02 75 2.1700 0.3784
1.8551 1.02 150 1.8236 0.3784
1.0117 2.02 225 1.1747 0.5135
0.6169 3.02 300 0.4409 0.8108
0.3897 4.02 375 0.6103 0.8108
0.3564 5.02 450 0.9210 0.7838
0.4998 6.02 525 0.6993 0.8378
0.0605 7.02 600 0.1617 0.9189
0.0814 8.02 675 0.6548 0.8378
0.0312 9.02 750 0.5517 0.8649
0.023 10.02 825 0.3978 0.9459
0.0021 11.02 900 0.3968 0.9189
0.1367 12.02 975 0.0432 0.9730
0.0021 13.02 1050 0.1839 0.9730
0.2373 14.02 1125 0.0755 0.9730
0.0015 15.02 1200 0.1486 0.9459
0.0013 16.02 1275 0.0174 1.0
0.1707 17.02 1350 0.5296 0.8919
0.0014 18.02 1425 0.0230 1.0
0.0011 19.02 1500 0.5438 0.8919
0.0011 20.02 1575 0.6957 0.8378
0.0008 21.02 1650 0.2705 0.9189
0.0028 22.02 1725 0.1965 0.9730
0.0007 23.02 1800 0.1783 0.9730
0.0008 24.02 1875 0.1809 0.9730
0.0006 25.02 1950 0.1793 0.9730
0.0009 26.02 2025 0.0970 0.9730
0.0006 27.02 2100 0.2483 0.9459
0.0006 28.02 2175 0.3035 0.9459
0.0006 29.02 2250 0.2314 0.9459
0.0005 30.02 2325 0.1906 0.9459
0.0005 31.02 2400 0.0814 0.9730
0.0005 32.02 2475 0.0881 0.9459
0.0005 33.02 2550 0.0798 0.9459
0.0005 34.02 2625 0.0706 0.9459
0.0005 35.02 2700 0.0949 0.9459
0.0004 36.02 2775 0.0868 0.9459
0.0004 37.02 2850 0.0595 0.9730
0.0005 38.02 2925 0.1342 0.9730
0.0004 39.02 3000 0.1594 0.9730
0.0004 40.02 3075 0.1488 0.9730
0.0004 41.02 3150 0.1434 0.9730
0.0004 42.02 3225 0.1149 0.9730
0.0004 43.02 3300 0.1119 0.9730
0.0004 44.02 3375 0.1119 0.9730
0.0004 45.02 3450 0.1096 0.9730
0.0004 46.02 3525 0.1096 0.9730
0.0004 47.02 3600 0.1085 0.9730
0.0004 48.02 3675 0.1032 0.9730
0.0004 49.02 3750 0.1064 0.9730

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.8.0+cu111
  • Datasets 2.7.1
  • Tokenizers 0.13.2