metadata
license: cc-by-nc-4.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-finetuned-ucf101-subset
results: []
videomae-base-finetuned-ucf101-subset
This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2483
- Accuracy: 0.9432
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 3750
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.3832 | 0.02 | 75 | 2.1700 | 0.3784 |
1.8551 | 1.02 | 150 | 1.8236 | 0.3784 |
1.0117 | 2.02 | 225 | 1.1747 | 0.5135 |
0.6169 | 3.02 | 300 | 0.4409 | 0.8108 |
0.3897 | 4.02 | 375 | 0.6103 | 0.8108 |
0.3564 | 5.02 | 450 | 0.9210 | 0.7838 |
0.4998 | 6.02 | 525 | 0.6993 | 0.8378 |
0.0605 | 7.02 | 600 | 0.1617 | 0.9189 |
0.0814 | 8.02 | 675 | 0.6548 | 0.8378 |
0.0312 | 9.02 | 750 | 0.5517 | 0.8649 |
0.023 | 10.02 | 825 | 0.3978 | 0.9459 |
0.0021 | 11.02 | 900 | 0.3968 | 0.9189 |
0.1367 | 12.02 | 975 | 0.0432 | 0.9730 |
0.0021 | 13.02 | 1050 | 0.1839 | 0.9730 |
0.2373 | 14.02 | 1125 | 0.0755 | 0.9730 |
0.0015 | 15.02 | 1200 | 0.1486 | 0.9459 |
0.0013 | 16.02 | 1275 | 0.0174 | 1.0 |
0.1707 | 17.02 | 1350 | 0.5296 | 0.8919 |
0.0014 | 18.02 | 1425 | 0.0230 | 1.0 |
0.0011 | 19.02 | 1500 | 0.5438 | 0.8919 |
0.0011 | 20.02 | 1575 | 0.6957 | 0.8378 |
0.0008 | 21.02 | 1650 | 0.2705 | 0.9189 |
0.0028 | 22.02 | 1725 | 0.1965 | 0.9730 |
0.0007 | 23.02 | 1800 | 0.1783 | 0.9730 |
0.0008 | 24.02 | 1875 | 0.1809 | 0.9730 |
0.0006 | 25.02 | 1950 | 0.1793 | 0.9730 |
0.0009 | 26.02 | 2025 | 0.0970 | 0.9730 |
0.0006 | 27.02 | 2100 | 0.2483 | 0.9459 |
0.0006 | 28.02 | 2175 | 0.3035 | 0.9459 |
0.0006 | 29.02 | 2250 | 0.2314 | 0.9459 |
0.0005 | 30.02 | 2325 | 0.1906 | 0.9459 |
0.0005 | 31.02 | 2400 | 0.0814 | 0.9730 |
0.0005 | 32.02 | 2475 | 0.0881 | 0.9459 |
0.0005 | 33.02 | 2550 | 0.0798 | 0.9459 |
0.0005 | 34.02 | 2625 | 0.0706 | 0.9459 |
0.0005 | 35.02 | 2700 | 0.0949 | 0.9459 |
0.0004 | 36.02 | 2775 | 0.0868 | 0.9459 |
0.0004 | 37.02 | 2850 | 0.0595 | 0.9730 |
0.0005 | 38.02 | 2925 | 0.1342 | 0.9730 |
0.0004 | 39.02 | 3000 | 0.1594 | 0.9730 |
0.0004 | 40.02 | 3075 | 0.1488 | 0.9730 |
0.0004 | 41.02 | 3150 | 0.1434 | 0.9730 |
0.0004 | 42.02 | 3225 | 0.1149 | 0.9730 |
0.0004 | 43.02 | 3300 | 0.1119 | 0.9730 |
0.0004 | 44.02 | 3375 | 0.1119 | 0.9730 |
0.0004 | 45.02 | 3450 | 0.1096 | 0.9730 |
0.0004 | 46.02 | 3525 | 0.1096 | 0.9730 |
0.0004 | 47.02 | 3600 | 0.1085 | 0.9730 |
0.0004 | 48.02 | 3675 | 0.1032 | 0.9730 |
0.0004 | 49.02 | 3750 | 0.1064 | 0.9730 |
Framework versions
- Transformers 4.24.0
- Pytorch 1.8.0+cu111
- Datasets 2.7.1
- Tokenizers 0.13.2