yoshitomo-matsubara commited on
Commit
644ed71
1 Parent(s): fed1047

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -0
README.md CHANGED
@@ -15,3 +15,15 @@ metrics:
15
  `bert-base-uncased` fine-tuned on WNLI dataset, using [***torchdistill***](https://github.com/yoshitomo-matsubara/torchdistill) and [Google Colab](https://colab.research.google.com/github/yoshitomo-matsubara/torchdistill/blob/master/demo/glue_finetuning_and_submission.ipynb).
16
  The hyperparameters are the same as those in Hugging Face's example and/or the paper of BERT, and the training configuration (including hyperparameters) is available [here](https://github.com/yoshitomo-matsubara/torchdistill/blob/main/configs/sample/glue/wnli/ce/bert_base_uncased.yaml).
17
  I submitted prediction files to [the GLUE leaderboard](https://gluebenchmark.com/leaderboard), and the overall GLUE score was **77.9**.
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  `bert-base-uncased` fine-tuned on WNLI dataset, using [***torchdistill***](https://github.com/yoshitomo-matsubara/torchdistill) and [Google Colab](https://colab.research.google.com/github/yoshitomo-matsubara/torchdistill/blob/master/demo/glue_finetuning_and_submission.ipynb).
16
  The hyperparameters are the same as those in Hugging Face's example and/or the paper of BERT, and the training configuration (including hyperparameters) is available [here](https://github.com/yoshitomo-matsubara/torchdistill/blob/main/configs/sample/glue/wnli/ce/bert_base_uncased.yaml).
17
  I submitted prediction files to [the GLUE leaderboard](https://gluebenchmark.com/leaderboard), and the overall GLUE score was **77.9**.
18
+
19
+ Yoshitomo Matsubara: **"torchdistill Meets Hugging Face Libraries for Reproducible, Coding-Free Deep Learning Studies: A Case Study on NLP"** at *EMNLP 2023 Workshop for Natural Language Processing Open Source Software (NLP-OSS)*
20
+
21
+ [[OpenReview](https://openreview.net/forum?id=A5Axeeu1Bo)] [[Preprint](https://arxiv.org/abs/2310.17644)]
22
+ ```bibtex
23
+ @article{matsubara2023torchdistill,
24
+ title={{torchdistill Meets Hugging Face Libraries for Reproducible, Coding-Free Deep Learning Studies: A Case Study on NLP}},
25
+ author={Matsubara, Yoshitomo},
26
+ journal={arXiv preprint arXiv:2310.17644},
27
+ year={2023}
28
+ }
29
+ ```