ymoslem's picture
End of training
ba28d9a verified
|
raw
history blame
2.34 kB
metadata
license: apache-2.0
base_model: openai/whisper-base
tags:
  - generated_from_trainer
metrics:
  - bleu
  - wer
model-index:
  - name: Whisper Base GA-EN Speech Translation v.1.2
    results: []

Whisper Base GA-EN Speech Translation v.1.2

This model is a fine-tuned version of openai/whisper-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5231
  • Bleu: 19.21
  • Chrf: 33.89
  • Wer: 86.4025

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 0.03
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Chrf Wer
0.5607 1.48 100 2.0068 13.89 29.73 102.1612
0.2227 2.96 200 2.1047 19.02 32.6 83.8361
0.0613 4.44 300 2.2670 20.37 34.38 82.9806
0.0491 5.93 400 2.2766 18.72 35.07 84.4665
0.0292 7.41 500 2.3870 19.19 33.57 85.2769
0.0307 8.89 600 2.4211 17.65 33.18 89.8244
0.0195 10.37 700 2.4980 19.56 33.37 83.3859
0.0165 11.85 800 2.4975 19.03 33.53 85.3219
0.0113 13.33 900 2.5300 18.93 33.95 85.9072
0.0097 14.81 1000 2.5231 19.21 33.89 86.4025

Framework versions

  • Transformers 4.39.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2