ylacombe's picture
ylacombe HF staff
End of training
febb19e verified
metadata
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - automatic-speech-recognition
  - librispeech_asr
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: wav2vec2-bert-CV16-en-libri
    results: []

wav2vec2-bert-CV16-en-libri

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the LIBRISPEECH_ASR - CLEAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1035
  • Wer: 0.0708
  • Cer: 0.0194

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 12
  • eval_batch_size: 12
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 3
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 72
  • total_eval_batch_size: 36
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10000
  • num_epochs: 7.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Cer Validation Loss Wer
2.8812 0.63 250 1.0000 2.8923 1.0
1.2899 1.26 500 0.2563 1.1471 0.7030
0.5276 1.89 750 0.1127 0.4687 0.4114
0.3313 2.52 1000 0.0659 0.2870 0.2577
0.2089 3.16 1250 0.0445 0.2079 0.1766
0.1634 3.79 1500 0.0366 0.1687 0.1411
0.1546 4.42 1750 0.1452 0.1138 0.0294
0.1245 5.05 2000 0.1316 0.0973 0.0260
0.1341 5.68 2250 0.1196 0.0867 0.0234
0.0942 6.31 2500 0.1128 0.0794 0.0213
0.0848 6.94 2750 0.1077 0.0717 0.0197

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0