|
--- |
|
license: mit |
|
base_model: facebook/w2v-bert-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: wav2vec2-bert-CV16-en-libri |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-bert-CV16-en-libri |
|
|
|
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2870 |
|
- Wer: 0.2577 |
|
- Cer: 0.0659 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 12 |
|
- eval_batch_size: 12 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 3 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 72 |
|
- total_eval_batch_size: 36 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 10000 |
|
- num_epochs: 3.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:| |
|
| 2.8812 | 0.63 | 250 | 2.8923 | 1.0 | 1.0000 | |
|
| 1.2899 | 1.26 | 500 | 1.1471 | 0.7030 | 0.2563 | |
|
| 0.5276 | 1.89 | 750 | 0.4687 | 0.4114 | 0.1127 | |
|
| 0.3313 | 2.52 | 1000 | 0.2870 | 0.2577 | 0.0659 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.0.dev0 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |
|
|