yihsuan's picture
Update README.md
6870ed1
|
raw
history blame
8.1 kB
metadata
language:
  - List of ISO 639-1 code for your language
  - zh
widget:
  - text: 中央疫情指揮中心臨時記者會宣布全院區為紅區,擴大隔離,但鄭文燦早在七十二小時前就主張,只要是先前在桃園醫院住院、轉院的患者與陪病家屬,都要居家隔離
    example_title: 範例ㄧ
  - text: 台東地檢署21日指揮警方前往張靜的事務所及黃姓女友所經營的按摩店進行搜索
    example_title: 範例二
  - text: 各地停電事件頻傳,即便經濟部與台電均否認「台灣缺電」,但也難消國人的疑慮。
    example_title: 範例三

license: gpl-3.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: albert-base-chinese-0407-ner results: []

albert-base-chinese-0407-ner

This model is a fine-tuned version of ckiplab/albert-base-chinese on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0948
  • Precision: 0.8603
  • Recall: 0.8871
  • F1: 0.8735
  • Accuracy: 0.9704

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
1.3484 0.05 500 0.5395 0.1841 0.1976 0.1906 0.8465
0.3948 0.09 1000 0.2910 0.6138 0.7113 0.6590 0.9263
0.2388 0.14 1500 0.2030 0.6628 0.7797 0.7165 0.9414
0.1864 0.18 2000 0.1729 0.7490 0.7935 0.7706 0.9498
0.1754 0.23 2500 0.1641 0.7415 0.7869 0.7635 0.9505
0.1558 0.28 3000 0.1532 0.7680 0.8002 0.7838 0.9530
0.1497 0.32 3500 0.1424 0.7865 0.8282 0.8068 0.9555
0.1488 0.37 4000 0.1373 0.7887 0.8111 0.7997 0.9553
0.1361 0.42 4500 0.1311 0.7942 0.8382 0.8156 0.9590
0.1335 0.46 5000 0.1264 0.7948 0.8423 0.8179 0.9596
0.1296 0.51 5500 0.1242 0.8129 0.8416 0.8270 0.9603
0.1338 0.55 6000 0.1315 0.7910 0.8588 0.8235 0.9586
0.1267 0.6 6500 0.1193 0.8092 0.8399 0.8243 0.9609
0.1207 0.65 7000 0.1205 0.8021 0.8469 0.8239 0.9601
0.1214 0.69 7500 0.1201 0.7969 0.8489 0.8220 0.9605
0.1168 0.74 8000 0.1134 0.8087 0.8607 0.8339 0.9620
0.1162 0.78 8500 0.1127 0.8177 0.8492 0.8331 0.9625
0.1202 0.83 9000 0.1283 0.7986 0.8550 0.8259 0.9580
0.1135 0.88 9500 0.1101 0.8213 0.8572 0.8389 0.9638
0.1121 0.92 10000 0.1097 0.8190 0.8588 0.8384 0.9635
0.1091 0.97 10500 0.1088 0.8180 0.8521 0.8347 0.9632
0.1058 1.02 11000 0.1085 0.8136 0.8716 0.8416 0.9630
0.0919 1.06 11500 0.1079 0.8309 0.8566 0.8436 0.9646
0.0914 1.11 12000 0.1079 0.8423 0.8542 0.8482 0.9656
0.0921 1.15 12500 0.1109 0.8312 0.8647 0.8476 0.9646
0.0926 1.2 13000 0.1240 0.8413 0.8488 0.8451 0.9637
0.0914 1.25 13500 0.1040 0.8336 0.8666 0.8498 0.9652
0.0917 1.29 14000 0.1032 0.8352 0.8707 0.8526 0.9662
0.0928 1.34 14500 0.1052 0.8347 0.8656 0.8498 0.9651
0.0906 1.38 15000 0.1032 0.8399 0.8619 0.8507 0.9662
0.0903 1.43 15500 0.1074 0.8180 0.8708 0.8436 0.9651
0.0889 1.48 16000 0.0990 0.8367 0.8713 0.8537 0.9670
0.0914 1.52 16500 0.1055 0.8508 0.8506 0.8507 0.9661
0.0934 1.57 17000 0.0979 0.8326 0.8740 0.8528 0.9669
0.0898 1.62 17500 0.1022 0.8393 0.8615 0.8502 0.9668
0.0869 1.66 18000 0.0962 0.8484 0.8762 0.8621 0.9682
0.089 1.71 18500 0.1008 0.8447 0.8714 0.8579 0.9674
0.0927 1.75 19000 0.0986 0.8379 0.8749 0.8560 0.9673
0.0883 1.8 19500 0.0965 0.8518 0.8749 0.8632 0.9688
0.0965 1.85 20000 0.0937 0.8412 0.8766 0.8585 0.9682
0.0834 1.89 20500 0.0920 0.8451 0.8862 0.8652 0.9687
0.0817 1.94 21000 0.0943 0.8439 0.8800 0.8616 0.9686
0.088 1.99 21500 0.0927 0.8483 0.8762 0.8620 0.9683
0.0705 2.03 22000 0.0993 0.8525 0.8783 0.8652 0.9690
0.0709 2.08 22500 0.0976 0.8610 0.8697 0.8653 0.9689
0.0655 2.12 23000 0.0997 0.8585 0.8665 0.8625 0.9683
0.0656 2.17 23500 0.0966 0.8569 0.8822 0.8694 0.9695
0.0698 2.22 24000 0.0955 0.8604 0.8775 0.8689 0.9696
0.065 2.26 24500 0.0971 0.8614 0.8780 0.8696 0.9697
0.0653 2.31 25000 0.0959 0.8600 0.8787 0.8692 0.9698
0.0685 2.35 25500 0.1001 0.8610 0.8710 0.8659 0.9690
0.0684 2.4 26000 0.0969 0.8490 0.8877 0.8679 0.9690
0.0657 2.45 26500 0.0954 0.8532 0.8832 0.8680 0.9696
0.0668 2.49 27000 0.0947 0.8604 0.8793 0.8698 0.9695
0.0644 2.54 27500 0.0989 0.8527 0.8790 0.8656 0.9696
0.0685 2.59 28000 0.0955 0.8596 0.8772 0.8683 0.9700
0.0702 2.63 28500 0.0937 0.8585 0.8837 0.8709 0.9700
0.0644 2.68 29000 0.0946 0.8605 0.8830 0.8716 0.9702
0.065 2.72 29500 0.0953 0.8617 0.8822 0.8719 0.9701
0.063 2.77 30000 0.0943 0.8597 0.8848 0.8721 0.9701
0.0638 2.82 30500 0.0941 0.8619 0.8846 0.8731 0.9702
0.066 2.86 31000 0.0942 0.8608 0.8847 0.8726 0.9701
0.0589 2.91 31500 0.0952 0.8632 0.8836 0.8733 0.9704
0.0568 2.95 32000 0.0948 0.8603 0.8871 0.8735 0.9704

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.10.0+cu111
  • Datasets 2.0.0
  • Tokenizers 0.11.6