yifeihu commited on
Commit
8ada796
·
verified ·
1 Parent(s): f77203e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +50 -203
README.md CHANGED
@@ -4,26 +4,53 @@ license_link: https://huggingface.co/microsoft/Florence-2-base-ft/resolve/main/L
4
  pipeline_tag: image-text-to-text
5
  tags:
6
  - vision
 
 
7
  ---
8
-
9
- # Florence-2: Advancing a Unified Representation for a Variety of Vision Tasks
10
 
11
  ## Model Summary
12
 
13
- This Hub repository contains a HuggingFace's `transformers` implementation of Florence-2 model from Microsoft.
 
 
 
 
 
 
 
14
 
15
- Florence-2 is an advanced vision foundation model that uses a prompt-based approach to handle a wide range of vision and vision-language tasks. Florence-2 can interpret simple text prompts to perform tasks like captioning, object detection, and segmentation. It leverages our FLD-5B dataset, containing 5.4 billion annotations across 126 million images, to master multi-task learning. The model's sequence-to-sequence architecture enables it to excel in both zero-shot and fine-tuned settings, proving to be a competitive vision foundation model.
16
 
17
- Resources and Technical Documentation:
18
- + [Florence-2 technical report](https://arxiv.org/abs/2311.06242).
19
- + [Jupyter Notebook for inference and visualization of Florence-2-large model](https://huggingface.co/microsoft/Florence-2-large/blob/main/sample_inference.ipynb)
20
 
21
- | Model | Model size | Model Description |
22
- | ------- | ------------- | ------------- |
23
- | Florence-2-base[[HF]](https://huggingface.co/microsoft/Florence-2-base) | 0.23B | Pretrained model with FLD-5B
24
- | Florence-2-large[[HF]](https://huggingface.co/microsoft/Florence-2-large) | 0.77B | Pretrained model with FLD-5B
25
- | Florence-2-base-ft[[HF]](https://huggingface.co/microsoft/Florence-2-base-ft) | 0.23B | Finetuned model on a colletion of downstream tasks
26
- | Florence-2-large-ft[[HF]](https://huggingface.co/microsoft/Florence-2-large-ft) | 0.77B | Finetuned model on a colletion of downstream tasks
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
  ## How to Get Started with the Model
29
 
@@ -31,17 +58,15 @@ Use the code below to get started with the model.
31
 
32
  ```python
33
  import requests
34
-
35
  from PIL import Image
36
  from transformers import AutoProcessor, AutoModelForCausalLM
37
 
38
-
39
- model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-base-ft", trust_remote_code=True)
40
- processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base-ft", trust_remote_code=True)
41
 
42
  prompt = "<OD>"
43
 
44
- url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
45
  image = Image.open(requests.get(url, stream=True).raw)
46
 
47
  inputs = processor(text=prompt, images=image, return_tensors="pt")
@@ -58,198 +83,20 @@ generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False
58
  parsed_answer = processor.post_process_generation(generated_text, task="<OD>", image_size=(image.width, image.height))
59
 
60
  print(parsed_answer)
61
-
62
  ```
63
 
 
64
 
65
- ## Tasks
66
-
67
- This model is capable of performing different tasks through changing the prompts.
68
-
69
- First, let's define a function to run a prompt.
70
-
71
- <details>
72
- <summary> Click to expand </summary>
73
-
74
- ```python
75
- import requests
76
-
77
- from PIL import Image
78
- from transformers import AutoProcessor, AutoModelForCausalLM
79
-
80
-
81
- model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-base-ft", trust_remote_code=True)
82
- processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base-ft", trust_remote_code=True)
83
-
84
- url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
85
- image = Image.open(requests.get(url, stream=True).raw)
86
-
87
- def run_example(task_prompt, text_input=None):
88
- if text_input is None:
89
- prompt = task_prompt
90
- else:
91
- prompt = task_prompt + text_input
92
- inputs = processor(text=prompt, images=image, return_tensors="pt")
93
- generated_ids = model.generate(
94
- input_ids=inputs["input_ids"],
95
- pixel_values=inputs["pixel_values"],
96
- max_new_tokens=1024,
97
- num_beams=3
98
- )
99
- generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
100
-
101
- parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))
102
-
103
- print(parsed_answer)
104
- ```
105
- </details>
106
-
107
- Here are the tasks `Florence-2` could perform:
108
-
109
- <details>
110
- <summary> Click to expand </summary>
111
-
112
-
113
- ### Caption
114
- ```python
115
- prompt = "<CAPTION>"
116
- run_example(prompt)
117
- ```
118
-
119
- ### Detailed Caption
120
- ```python
121
- prompt = "<DETAILED_CAPTION>"
122
- run_example(prompt)
123
- ```
124
-
125
- ### More Detailed Caption
126
- ```python
127
- prompt = "<MORE_DETAILED_CAPTION>"
128
- run_example(prompt)
129
- ```
130
-
131
- ### Caption to Phrase Grounding
132
- caption to phrase grounding task requires additional text input, i.e. caption.
133
-
134
- Caption to phrase grounding results format:
135
- {'\<CAPTION_TO_PHRASE_GROUNDING>': {'bboxes': [[x1, y1, x2, y2], ...], 'labels': ['', '', ...]}}
136
- ```python
137
- task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>"
138
- results = run_example(task_prompt, text_input="A green car parked in front of a yellow building.")
139
- ```
140
-
141
- ### Object Detection
142
-
143
- OD results format:
144
- {'\<OD>': {'bboxes': [[x1, y1, x2, y2], ...],
145
- 'labels': ['label1', 'label2', ...]} }
146
-
147
- ```python
148
- prompt = "<OD>"
149
- run_example(prompt)
150
- ```
151
-
152
- ### Dense Region Caption
153
- Dense region caption results format:
154
- {'\<DENSE_REGION_CAPTION>' : {'bboxes': [[x1, y1, x2, y2], ...],
155
- 'labels': ['label1', 'label2', ...]} }
156
- ```python
157
- prompt = "<DENSE_REGION_CAPTION>"
158
- run_example(prompt)
159
- ```
160
-
161
- ### Region proposal
162
- Dense region caption results format:
163
- {'\<REGION_PROPOSAL>': {'bboxes': [[x1, y1, x2, y2], ...],
164
- 'labels': ['', '', ...]}}
165
- ```python
166
- prompt = "<REGION_PROPOSAL>"
167
- run_example(prompt)
168
- ```
169
-
170
-
171
- ### OCR
172
-
173
- ```python
174
- prompt = "<OCR>"
175
- run_example(prompt)
176
- ```
177
-
178
- ### OCR with Region
179
- OCR with region output format:
180
- {'\<OCR_WITH_REGION>': {'quad_boxes': [[x1, y1, x2, y2, x3, y3, x4, y4], ...], 'labels': ['text1', ...]}}
181
- ```python
182
- prompt = "<OCR_WITH_REGION>"
183
- run_example(prompt)
184
- ```
185
 
186
- for More detailed examples, please refer to [notebook](https://huggingface.co/microsoft/Florence-2-large/blob/main/sample_inference.ipynb)
187
- </details>
188
-
189
- # Benchmarks
190
-
191
- ## Florence-2 Zero-shot performance
192
-
193
- The following table presents the zero-shot performance of generalist vision foundation models on image captioning and object detection evaluation tasks. These models have not been exposed to the training data of the evaluation tasks during their training phase.
194
-
195
- | Method | #params | COCO Cap. test CIDEr | NoCaps val CIDEr | TextCaps val CIDEr | COCO Det. val2017 mAP |
196
- |--------|---------|----------------------|------------------|--------------------|-----------------------|
197
- | Flamingo | 80B | 84.3 | - | - | - |
198
- | Florence-2-base| 0.23B | 133.0 | 118.7 | 70.1 | 34.7 |
199
- | Florence-2-large| 0.77B | 135.6 | 120.8 | 72.8 | 37.5 |
200
-
201
-
202
- The following table continues the comparison with performance on other vision-language evaluation tasks.
203
-
204
- | Method | Flickr30k test R@1 | Refcoco val Accuracy | Refcoco test-A Accuracy | Refcoco test-B Accuracy | Refcoco+ val Accuracy | Refcoco+ test-A Accuracy | Refcoco+ test-B Accuracy | Refcocog val Accuracy | Refcocog test Accuracy | Refcoco RES val mIoU |
205
- |--------|----------------------|----------------------|-------------------------|-------------------------|-----------------------|--------------------------|--------------------------|-----------------------|------------------------|----------------------|
206
- | Kosmos-2 | 78.7 | 52.3 | 57.4 | 47.3 | 45.5 | 50.7 | 42.2 | 60.6 | 61.7 | - |
207
- | Florence-2-base | 83.6 | 53.9 | 58.4 | 49.7 | 51.5 | 56.4 | 47.9 | 66.3 | 65.1 | 34.6 |
208
- | Florence-2-large | 84.4 | 56.3 | 61.6 | 51.4 | 53.6 | 57.9 | 49.9 | 68.0 | 67.0 | 35.8 |
209
-
210
-
211
-
212
- ## Florence-2 finetuned performance
213
-
214
- We finetune Florence-2 models with a collection of downstream tasks, resulting two generalist models *Florence-2-base-ft* and *Florence-2-large-ft* that can conduct a wide range of downstream tasks.
215
-
216
- The table below compares the performance of specialist and generalist models on various captioning and Visual Question Answering (VQA) tasks. Specialist models are fine-tuned specifically for each task, whereas generalist models are fine-tuned in a task-agnostic manner across all tasks. The symbol "▲" indicates the usage of external OCR as input.
217
-
218
- | Method | # Params | COCO Caption Karpathy test CIDEr | NoCaps val CIDEr | TextCaps val CIDEr | VQAv2 test-dev Acc | TextVQA test-dev Acc | VizWiz VQA test-dev Acc |
219
- |----------------|----------|-----------------------------------|------------------|--------------------|--------------------|----------------------|-------------------------|
220
- | **Specialist Models** | | | | | | | |
221
- | CoCa | 2.1B | 143.6 | 122.4 | - | 82.3 | - | - |
222
- | BLIP-2 | 7.8B | 144.5 | 121.6 | - | 82.2 | - | - |
223
- | GIT2 | 5.1B | 145.0 | 126.9 | 148.6 | 81.7 | 67.3 | 71.0 |
224
- | Flamingo | 80B | 138.1 | - | - | 82.0 | 54.1 | 65.7 |
225
- | PaLI | 17B | 149.1 | 127.0 | 160.0▲ | 84.3 | 58.8 / 73.1▲ | 71.6 / 74.4▲ |
226
- | PaLI-X | 55B | 149.2 | 126.3 | 147.0 / 163.7▲ | 86.0 | 71.4 / 80.8▲ | 70.9 / 74.6▲ |
227
- | **Generalist Models** | | | | | | | |
228
- | Unified-IO | 2.9B | - | 100.0 | - | 77.9 | - | 57.4 |
229
- | Florence-2-base-ft | 0.23B | 140.0 | 116.7 | 143.9 | 79.7 | 63.6 | 63.6 |
230
- | Florence-2-large-ft | 0.77B | 143.3 | 124.9 | 151.1 | 81.7 | 73.5 | 72.6 |
231
-
232
-
233
- | Method | # Params | COCO Det. val2017 mAP | Flickr30k test R@1 | RefCOCO val Accuracy | RefCOCO test-A Accuracy | RefCOCO test-B Accuracy | RefCOCO+ val Accuracy | RefCOCO+ test-A Accuracy | RefCOCO+ test-B Accuracy | RefCOCOg val Accuracy | RefCOCOg test Accuracy | RefCOCO RES val mIoU |
234
- |----------------------|----------|-----------------------|--------------------|----------------------|-------------------------|-------------------------|------------------------|---------------------------|---------------------------|------------------------|-----------------------|------------------------|
235
- | **Specialist Models** | | | | | | | | | | | | |
236
- | SeqTR | - | - | - | 83.7 | 86.5 | 81.2 | 71.5 | 76.3 | 64.9 | 74.9 | 74.2 | - |
237
- | PolyFormer | - | - | - | 90.4 | 92.9 | 87.2 | 85.0 | 89.8 | 78.0 | 85.8 | 85.9 | 76.9 |
238
- | UNINEXT | 0.74B | 60.6 | - | 92.6 | 94.3 | 91.5 | 85.2 | 89.6 | 79.8 | 88.7 | 89.4 | - |
239
- | Ferret | 13B | - | - | 89.5 | 92.4 | 84.4 | 82.8 | 88.1 | 75.2 | 85.8 | 86.3 | - |
240
- | **Generalist Models** | | | | | | | | | | | | |
241
- | UniTAB | - | - | - | 88.6 | 91.1 | 83.8 | 81.0 | 85.4 | 71.6 | 84.6 | 84.7 | - |
242
- | Florence-2-base-ft | 0.23B | 41.4 | 84.0 | 92.6 | 94.8 | 91.5 | 86.8 | 91.7 | 82.2 | 89.8 | 82.2 | 78.0 |
243
- | Florence-2-large-ft| 0.77B | 43.4 | 85.2 | 93.4 | 95.3 | 92.0 | 88.3 | 92.9 | 83.6 | 91.2 | 91.7 | 80.5 |
244
-
245
 
246
  ## BibTex and citation info
247
 
248
  ```
249
- @article{xiao2023florence,
250
- title={Florence-2: Advancing a unified representation for a variety of vision tasks},
251
- author={Xiao, Bin and Wu, Haiping and Xu, Weijian and Dai, Xiyang and Hu, Houdong and Lu, Yumao and Zeng, Michael and Liu, Ce and Yuan, Lu},
252
- journal={arXiv preprint arXiv:2311.06242},
253
- year={2023}
254
  }
255
  ```
 
4
  pipeline_tag: image-text-to-text
5
  tags:
6
  - vision
7
+ - ocr
8
+ - segmentation
9
  ---
10
+ # TF-ID: Table/Figure IDentifier for academic papers
 
11
 
12
  ## Model Summary
13
 
14
+ TF-ID (Table/Figure IDentifier) is a family of object detection models finetuned to extract tables and figures in academic papers created by [Yifei Hu](https://x.com/hu_yifei). They come in four versions:
15
+ | Model | Model size | Model Description |
16
+ | ------- | ------------- | ------------- |
17
+ | TF-ID-base[[HF]](https://huggingface.co/yifeihu/TF-ID-base) | 0.23B | Extract tables/figures and their caption text
18
+ | TF-ID-large[[HF]](https://huggingface.co/yifeihu/TF-ID-large) | 0.77B | Extract tables/figures and their caption text
19
+ | TF-ID-base-no-caption[[HF]](https://huggingface.co/yifeihu/TF-ID-base-no-caption) | 0.23B | Extract tables/figures without caption text
20
+ | TF-ID-large-no-caption[[HF]](https://huggingface.co/yifeihu/TF-ID-large-no-caption) | 0.77B | Extract tables/figures without caption text
21
+ All TF-ID models are finetuned from [microsoft/Florence-2](https://huggingface.co/microsoft/Florence-2-large-ft) checkpoints.
22
 
23
+ The models were finetuned with papers from Hugging Face Daily Papers. All bounding boxes are manually annotated and checked by humans.
24
 
25
+ TF-ID models take an image of a single paper page as the input, and return bounding boxes for all tables and figures in the given page.
 
 
26
 
27
+ TF-ID-base and TF-ID-large draw bounding boxes around tables/figures and their caption text.
28
+
29
+ TF-ID-base-no-caption and TF-ID-large-no-caption draw bounding boxes around tables/figures without their caption text.
30
+
31
+ ![image/png](https://huggingface.co/yifeihu/TF-ID-base/resolve/main/td-id-caption.png)
32
+
33
+ Object Detection results format:
34
+ {'\<OD>': {'bboxes': [[x1, y1, x2, y2], ...],
35
+ 'labels': ['label1', 'label2', ...]} }
36
+
37
+ ## Benchmarks
38
+
39
+ We tested the models on paper pages outside the training dataset. The papers are a subset of huggingface daily paper.
40
+
41
+ Correct output - the model draws correct bounding boxes for every table/figure in the given page.
42
+
43
+ | Model | Total Images | Correct Output | Success Rate |
44
+ |---------------------------------------------------------------|--------------|----------------|--------------|
45
+ | TF-ID-base[[HF]](https://huggingface.co/yifeihu/TF-ID-base) | 258 | 251 | 97.29% |
46
+ | TF-ID-large[[HF]](https://huggingface.co/yifeihu/TF-ID-large) | 258 | 253 | 98.06% |
47
+
48
+ | Model | Total Images | Correct Output | Success Rate |
49
+ |---------------------------------------------------------------|--------------|----------------|--------------|
50
+ | TF-ID-base-no-caption[[HF]](https://huggingface.co/yifeihu/TF-ID-base-no-caption) | 261 | 253 | 96.93% |
51
+ | TF-ID-large-no-caption[[HF]](https://huggingface.co/yifeihu/TF-ID-large-no-caption) | 261 | 254 | 97.32% |
52
+
53
+ Depending on the use cases, some "incorrect" output could be totally usable. For example, the model draw two bounding boxes for one figure with two child components.
54
 
55
  ## How to Get Started with the Model
56
 
 
58
 
59
  ```python
60
  import requests
 
61
  from PIL import Image
62
  from transformers import AutoProcessor, AutoModelForCausalLM
63
 
64
+ model = AutoModelForCausalLM.from_pretrained("yifeihu/TF-ID-base-no-caption", trust_remote_code=True)
65
+ processor = AutoProcessor.from_pretrained("yifeihu/TF-ID-base-no-caption", trust_remote_code=True)
 
66
 
67
  prompt = "<OD>"
68
 
69
+ url = "https://huggingface.co/yifeihu/TF-ID-base/resolve/main/arxiv_2305_10853_5.png?download=true"
70
  image = Image.open(requests.get(url, stream=True).raw)
71
 
72
  inputs = processor(text=prompt, images=image, return_tensors="pt")
 
83
  parsed_answer = processor.post_process_generation(generated_text, task="<OD>", image_size=(image.width, image.height))
84
 
85
  print(parsed_answer)
 
86
  ```
87
 
88
+ To visualize the results, see [this tutorial notebook](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/how-to-finetune-florence-2-on-detection-dataset.ipynb) for more details.
89
 
90
+ ## Finetuning Code and Dataset
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
 
92
+ Coming soon!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
 
94
  ## BibTex and citation info
95
 
96
  ```
97
+ @misc{TF-ID,
98
+ url={[https://huggingface.co/yifeihu/TF-ID-base](https://huggingface.co/yifeihu/TF-ID-base)},
99
+ title={TF-ID: Table/Figure IDentifier for academic papers},
100
+ author={"Yifei Hu"}
 
101
  }
102
  ```