|
|
|
|
|
|
|
|
|
|
|
|
|
import librosa |
|
import librosa.display |
|
import numpy as np |
|
import pandas as pd |
|
import scipy |
|
from scipy.stats import skew |
|
|
|
import matplotlib.pyplot as plt |
|
|
|
SAMPLE_RATE = 44100 |
|
def get_mfcc(name, path): |
|
data, _ = librosa.core.load(path + name, sr = SAMPLE_RATE) |
|
assert _ == SAMPLE_RATE |
|
try: |
|
ft1 = librosa.feature.mfcc(data, sr = SAMPLE_RATE, n_mfcc=30) |
|
ft2 = librosa.feature.zero_crossing_rate(data)[0] |
|
ft3 = librosa.feature.spectral_rolloff(data)[0] |
|
ft4 = librosa.feature.spectral_centroid(data)[0] |
|
ft5 = librosa.feature.spectral_contrast(data)[0] |
|
ft6 = librosa.feature.spectral_bandwidth(data)[0] |
|
ft1_trunc = np.hstack((np.mean(ft1, axis=1), np.std(ft1, axis=1), skew(ft1, axis = 1), np.max(ft1, axis = 1), |
|
np.median(ft1, axis = 1), np.min(ft1, axis = 1))) |
|
ft2_trunc = np.hstack((np.mean(ft2), np.std(ft2), skew(ft2), np.max(ft2), np.median(ft2), np.min(ft2))) |
|
ft3_trunc = np.hstack((np.mean(ft3), np.std(ft3), skew(ft3), np.max(ft3), np.median(ft3), np.min(ft3))) |
|
ft4_trunc = np.hstack((np.mean(ft4), np.std(ft4), skew(ft4), np.max(ft4), np.median(ft4), np.min(ft4))) |
|
ft5_trunc = np.hstack((np.mean(ft5), np.std(ft5), skew(ft5), np.max(ft5), np.median(ft5), np.min(ft5))) |
|
ft6_trunc = np.hstack((np.mean(ft6), np.std(ft6), skew(ft6), np.max(ft6), np.median(ft6), np.max(ft6))) |
|
return pd.Series(np.hstack((ft1_trunc, ft2_trunc, ft3_trunc, ft4_trunc, ft5_trunc, ft6_trunc))) |
|
except: |
|
print('bad file') |
|
return pd.Series([0]*210) |
|
|
|
def MFCC_spectrogram(y, sr): |
|
|
|
melspec = librosa.feature.melspectrogram(y, sr, n_fft=1024, hop_length=512, n_mels=128) |
|
|
|
logmelspec = librosa.power_to_db(melspec) |
|
|
|
plt.figure() |
|
librosa.display.specshow(logmelspec, sr=sr, x_axis='time', y_axis='mel') |
|
plt.title('Features of unknow frog by MFCC (Mel Frquency Cepstral Coefficients)') |
|
plt.show() |
|
|
|
|
|
|
|
def FeatureExtraction(fname): |
|
|
|
test= pd.DataFrame({'fname':[fname]}) |
|
|
|
test_data = test['fname'].progress_apply(get_mfcc, path='') |
|
test_data = test_data.values |
|
return test_data |
|
|
|
|