yeye776's picture
Update README.md
2e41f5a
|
raw
history blame
1.69 kB
metadata
tags:
  - autotrain
  - text-classification
language:
  - unk
widget:
  - text: 익일 화물 알려줘
datasets:
  - yeye776/autotrain-data-intent-classification-6categories-bertkorbase
co2_eq_emissions:
  emissions: 0.4074326029231982

Model Trained Using AutoTrain

  • Problem type: Multi-class Classification
  • Model ID: 89098143855
  • CO2 Emissions (in grams): 0.4074

Validation Metrics

  • Loss: 0.052
  • Accuracy: 0.976
  • Macro F1: 0.973
  • Micro F1: 0.976
  • Weighted F1: 0.975
  • Macro Precision: 0.983
  • Micro Precision: 0.976
  • Weighted Precision: 0.979
  • Macro Recall: 0.967
  • Micro Recall: 0.976
  • Weighted Recall: 0.976

Dataset Label

Label intent(category)
11 날씨
12 장소안내
13 전화연결
14 일상대화
15 화물추천
16 검색(FAQ)

Usage

You can use cURL to access this model:

$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/yeye776/autotrain-intent-classification-6categories-bertkorbase-89098143855

Or Python API:

from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForSequenceClassification.from_pretrained("yeye776/autotrain-intent-classification-6categories-bertkorbase-89098143855", use_auth_token=True)

tokenizer = AutoTokenizer.from_pretrained("yeye776/autotrain-intent-classification-6categories-bertkorbase-89098143855", use_auth_token=True)

inputs = tokenizer("I love AutoTrain", return_tensors="pt")

outputs = model(**inputs)