new_model / README.md
yessilver's picture
Create README.md
e0fccc7 verified
metadata
tags:
  - mteb
model-index:
  - name: e5-small-v2
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 76.65671641791046
          - type: ap
            value: 40.16054083847425
          - type: f1
            value: 70.73805260085523
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 46.431999999999995
          - type: f1
            value: 44.4239364840113
      - task:
          type: Retrieval
        dataset:
          type: mteb/arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
        metrics:
          - type: map_at_1
            value: 24.182000000000002
          - type: map_at_10
            value: 38.53
          - type: map_at_100
            value: 39.574999999999996
          - type: map_at_1000
            value: 39.593
          - type: map_at_3
            value: 33.796
          - type: map_at_5
            value: 36.406
          - type: mrr_at_1
            value: 24.964
          - type: mrr_at_10
            value: 38.829
          - type: mrr_at_100
            value: 39.867000000000004
          - type: mrr_at_1000
            value: 39.885999999999996
          - type: mrr_at_3
            value: 34.092
          - type: mrr_at_5
            value: 36.713
          - type: ndcg_at_1
            value: 24.182000000000002
          - type: ndcg_at_10
            value: 46.865
          - type: ndcg_at_100
            value: 51.611
          - type: ndcg_at_1000
            value: 52.137
          - type: ndcg_at_3
            value: 37.036
          - type: ndcg_at_5
            value: 41.715999999999994
          - type: precision_at_1
            value: 24.182000000000002
          - type: precision_at_10
            value: 7.367999999999999
          - type: precision_at_100
            value: 0.951
          - type: precision_at_1000
            value: 0.099
          - type: precision_at_3
            value: 15.481
          - type: precision_at_5
            value: 11.55
          - type: recall_at_1
            value: 24.182000000000002
          - type: recall_at_10
            value: 73.68400000000001
          - type: recall_at_100
            value: 95.092
          - type: recall_at_1000
            value: 99.289
          - type: recall_at_3
            value: 46.444
          - type: recall_at_5
            value: 57.752
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 43.243157093430476
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 36.48617956618108
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 57.6915668741631
          - type: mrr
            value: 70.97832300048366
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 82.25177125617765
          - type: cos_sim_spearman
            value: 82.19042698150236
          - type: euclidean_pearson
            value: 81.39677961271671
          - type: euclidean_spearman
            value: 82.19042698150236
          - type: manhattan_pearson
            value: 81.83582953195571
          - type: manhattan_spearman
            value: 82.20127060207557
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 73.73701298701299
          - type: f1
            value: 72.68295178070956
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 35.55562814544096
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 31.024495399036073
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-android
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: f46a197baaae43b4f621051089b82a364682dfeb
        metrics:
          - type: map_at_1
            value: 31.356
          - type: map_at_10
            value: 41.583
          - type: map_at_100
            value: 42.931999999999995
          - type: map_at_1000
            value: 43.059999999999995
          - type: map_at_3
            value: 38.572
          - type: map_at_5
            value: 40.184999999999995
          - type: mrr_at_1
            value: 39.485
          - type: mrr_at_10
            value: 48.325
          - type: mrr_at_100
            value: 49.044
          - type: mrr_at_1000
            value: 49.095
          - type: mrr_at_3
            value: 45.97
          - type: mrr_at_5
            value: 47.38
          - type: ndcg_at_1
            value: 39.485
          - type: ndcg_at_10
            value: 47.689
          - type: ndcg_at_100
            value: 52.611
          - type: ndcg_at_1000
            value: 54.75600000000001
          - type: ndcg_at_3
            value: 43.675000000000004
          - type: ndcg_at_5
            value: 45.305
          - type: precision_at_1
            value: 39.485
          - type: precision_at_10
            value: 9.142
          - type: precision_at_100
            value: 1.4460000000000002
          - type: precision_at_1000
            value: 0.19
          - type: precision_at_3
            value: 21.364
          - type: precision_at_5
            value: 15.021
          - type: recall_at_1
            value: 31.356
          - type: recall_at_10
            value: 58.338
          - type: recall_at_100
            value: 79.23400000000001
          - type: recall_at_1000
            value: 93.4
          - type: recall_at_3
            value: 45.224
          - type: recall_at_5
            value: 50.719
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-english
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
        metrics:
          - type: map_at_1
            value: 25.988
          - type: map_at_10
            value: 34.314
          - type: map_at_100
            value: 35.323
          - type: map_at_1000
            value: 35.453
          - type: map_at_3
            value: 31.855
          - type: map_at_5
            value: 33.317
          - type: mrr_at_1
            value: 32.675
          - type: mrr_at_10
            value: 40.199
          - type: mrr_at_100
            value: 40.912
          - type: mrr_at_1000
            value: 40.964
          - type: mrr_at_3
            value: 38.132
          - type: mrr_at_5
            value: 39.421
          - type: ndcg_at_1
            value: 32.675
          - type: ndcg_at_10
            value: 39.346
          - type: ndcg_at_100
            value: 43.578
          - type: ndcg_at_1000
            value: 45.975
          - type: ndcg_at_3
            value: 35.75
          - type: ndcg_at_5
            value: 37.578
          - type: precision_at_1
            value: 32.675
          - type: precision_at_10
            value: 7.228999999999999
          - type: precision_at_100
            value: 1.204
          - type: precision_at_1000
            value: 0.172
          - type: precision_at_3
            value: 17.113
          - type: precision_at_5
            value: 12.166
          - type: recall_at_1
            value: 25.988
          - type: recall_at_10
            value: 47.943000000000005
          - type: recall_at_100
            value: 66.326
          - type: recall_at_1000
            value: 82.02000000000001
          - type: recall_at_3
            value: 37.169999999999995
          - type: recall_at_5
            value: 42.356
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-gaming
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: 4885aa143210c98657558c04aaf3dc47cfb54340
        metrics:
          - type: map_at_1
            value: 38.536
          - type: map_at_10
            value: 49.514
          - type: map_at_100
            value: 50.55500000000001
          - type: map_at_1000
            value: 50.615
          - type: map_at_3
            value: 46.329
          - type: map_at_5
            value: 48.278
          - type: mrr_at_1
            value: 43.887
          - type: mrr_at_10
            value: 52.900999999999996
          - type: mrr_at_100
            value: 53.63099999999999
          - type: mrr_at_1000
            value: 53.664
          - type: mrr_at_3
            value: 50.502
          - type: mrr_at_5
            value: 52.063
          - type: ndcg_at_1
            value: 43.887
          - type: ndcg_at_10
            value: 54.847
          - type: ndcg_at_100
            value: 59.163
          - type: ndcg_at_1000
            value: 60.44199999999999
          - type: ndcg_at_3
            value: 49.6
          - type: ndcg_at_5
            value: 52.493
          - type: precision_at_1
            value: 43.887
          - type: precision_at_10
            value: 8.677
          - type: precision_at_100
            value: 1.176
          - type: precision_at_1000
            value: 0.133
          - type: precision_at_3
            value: 21.797
          - type: precision_at_5
            value: 15.146999999999998
          - type: recall_at_1
            value: 38.536
          - type: recall_at_10
            value: 67.23
          - type: recall_at_100
            value: 86.095
          - type: recall_at_1000
            value: 95.26400000000001
          - type: recall_at_3
            value: 53.388000000000005
          - type: recall_at_5
            value: 60.4
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-gis
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: 5003b3064772da1887988e05400cf3806fe491f2
        metrics:
          - type: map_at_1
            value: 23.488
          - type: map_at_10
            value: 30.375000000000004
          - type: map_at_100
            value: 31.343
          - type: map_at_1000
            value: 31.447999999999997
          - type: map_at_3
            value: 28.017999999999997
          - type: map_at_5
            value: 29.415999999999997
          - type: mrr_at_1
            value: 25.085
          - type: mrr_at_10
            value: 31.935000000000002
          - type: mrr_at_100
            value: 32.843
          - type: mrr_at_1000
            value: 32.929
          - type: mrr_at_3
            value: 29.548000000000002
          - type: mrr_at_5
            value: 31.04
          - type: ndcg_at_1
            value: 25.085
          - type: ndcg_at_10
            value: 34.48
          - type: ndcg_at_100
            value: 39.501
          - type: ndcg_at_1000
            value: 42.141
          - type: ndcg_at_3
            value: 29.831000000000003
          - type: ndcg_at_5
            value: 32.312999999999995
          - type: precision_at_1
            value: 25.085
          - type: precision_at_10
            value: 5.153
          - type: precision_at_100
            value: 0.815
          - type: precision_at_1000
            value: 0.108
          - type: precision_at_3
            value: 12.09
          - type: precision_at_5
            value: 8.701
          - type: recall_at_1
            value: 23.488
          - type: recall_at_10
            value: 45.671
          - type: recall_at_100
            value: 69.062
          - type: recall_at_1000
            value: 88.82
          - type: recall_at_3
            value: 33.376
          - type: recall_at_5
            value: 39.311
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-mathematica
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: 90fceea13679c63fe563ded68f3b6f06e50061de
        metrics:
          - type: map_at_1
            value: 12.879999999999999
          - type: map_at_10
            value: 18.873
          - type: map_at_100
            value: 20.097
          - type: map_at_1000
            value: 20.222
          - type: map_at_3
            value: 16.982
          - type: map_at_5
            value: 17.902
          - type: mrr_at_1
            value: 15.920000000000002
          - type: mrr_at_10
            value: 22.71
          - type: mrr_at_100
            value: 23.818
          - type: mrr_at_1000
            value: 23.898
          - type: mrr_at_3
            value: 20.626
          - type: mrr_at_5
            value: 21.733
          - type: ndcg_at_1
            value: 15.920000000000002
          - type: ndcg_at_10
            value: 22.959
          - type: ndcg_at_100
            value: 29.270000000000003
          - type: ndcg_at_1000
            value: 32.448
          - type: ndcg_at_3
            value: 19.356
          - type: ndcg_at_5
            value: 20.816000000000003
          - type: precision_at_1
            value: 15.920000000000002
          - type: precision_at_10
            value: 4.328
          - type: precision_at_100
            value: 0.8710000000000001
          - type: precision_at_1000
            value: 0.127
          - type: precision_at_3
            value: 9.203999999999999
          - type: precision_at_5
            value: 6.5920000000000005
          - type: recall_at_1
            value: 12.879999999999999
          - type: recall_at_10
            value: 31.724999999999998
          - type: recall_at_100
            value: 60.049
          - type: recall_at_1000
            value: 83.133
          - type: recall_at_3
            value: 21.981
          - type: recall_at_5
            value: 25.668999999999997
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-physics
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
        metrics:
          - type: map_at_1
            value: 22.774
          - type: map_at_10
            value: 31.312
          - type: map_at_100
            value: 32.487
          - type: map_at_1000
            value: 32.609
          - type: map_at_3
            value: 28.589
          - type: map_at_5
            value: 30.142999999999997
          - type: mrr_at_1
            value: 28.393
          - type: mrr_at_10
            value: 36.813
          - type: mrr_at_100
            value: 37.724999999999994
          - type: mrr_at_1000
            value: 37.789
          - type: mrr_at_3
            value: 34.392
          - type: mrr_at_5
            value: 35.893
          - type: ndcg_at_1
            value: 28.393
          - type: ndcg_at_10
            value: 36.835
          - type: ndcg_at_100
            value: 42.192
          - type: ndcg_at_1000
            value: 44.812000000000005
          - type: ndcg_at_3
            value: 32.268
          - type: ndcg_at_5
            value: 34.515
          - type: precision_at_1
            value: 28.393
          - type: precision_at_10
            value: 6.737
          - type: precision_at_100
            value: 1.114
          - type: precision_at_1000
            value: 0.154
          - type: precision_at_3
            value: 15.399
          - type: precision_at_5
            value: 10.991
          - type: recall_at_1
            value: 22.774
          - type: recall_at_10
            value: 48.136
          - type: recall_at_100
            value: 71
          - type: recall_at_1000
            value: 88.74
          - type: recall_at_3
            value: 35.098
          - type: recall_at_5
            value: 41.134
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-programmers
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
        metrics:
          - type: map_at_1
            value: 23.669
          - type: map_at_10
            value: 32.554
          - type: map_at_100
            value: 33.886
          - type: map_at_1000
            value: 34.004
          - type: map_at_3
            value: 29.944
          - type: map_at_5
            value: 31.330999999999996
          - type: mrr_at_1
            value: 29.110000000000003
          - type: mrr_at_10
            value: 37.234
          - type: mrr_at_100
            value: 38.151
          - type: mrr_at_1000
            value: 38.218999999999994
          - type: mrr_at_3
            value: 35.046
          - type: mrr_at_5
            value: 36.056
          - type: ndcg_at_1
            value: 29.110000000000003
          - type: ndcg_at_10
            value: 37.743
          - type: ndcg_at_100
            value: 43.413000000000004
          - type: ndcg_at_1000
            value: 46.06
          - type: ndcg_at_3
            value: 33.501999999999995
          - type: ndcg_at_5
            value: 35.175
          - type: precision_at_1
            value: 29.110000000000003
          - type: precision_at_10
            value: 6.872
          - type: precision_at_100
            value: 1.129
          - type: precision_at_1000
            value: 0.154
          - type: precision_at_3
            value: 16.02
          - type: precision_at_5
            value: 11.21
          - type: recall_at_1
            value: 23.669
          - type: recall_at_10
            value: 48.615
          - type: recall_at_100
            value: 72.708
          - type: recall_at_1000
            value: 90.96300000000001
          - type: recall_at_3
            value: 36.373
          - type: recall_at_5
            value: 41.06
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-stats
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
        metrics:
          - type: map_at_1
            value: 21.364
          - type: map_at_10
            value: 27.208
          - type: map_at_100
            value: 28.083000000000002
          - type: map_at_1000
            value: 28.182000000000002
          - type: map_at_3
            value: 25.448999999999998
          - type: map_at_5
            value: 26.397
          - type: mrr_at_1
            value: 24.233
          - type: mrr_at_10
            value: 29.802
          - type: mrr_at_100
            value: 30.595
          - type: mrr_at_1000
            value: 30.660999999999998
          - type: mrr_at_3
            value: 28.17
          - type: mrr_at_5
            value: 28.967
          - type: ndcg_at_1
            value: 24.233
          - type: ndcg_at_10
            value: 30.774
          - type: ndcg_at_100
            value: 35.414
          - type: ndcg_at_1000
            value: 37.962
          - type: ndcg_at_3
            value: 27.497
          - type: ndcg_at_5
            value: 28.957
          - type: precision_at_1
            value: 24.233
          - type: precision_at_10
            value: 4.755
          - type: precision_at_100
            value: 0.775
          - type: precision_at_1000
            value: 0.108
          - type: precision_at_3
            value: 11.860999999999999
          - type: precision_at_5
            value: 8.097999999999999
          - type: recall_at_1
            value: 21.364
          - type: recall_at_10
            value: 39.291
          - type: recall_at_100
            value: 60.907
          - type: recall_at_1000
            value: 79.786
          - type: recall_at_3
            value: 30.257
          - type: recall_at_5
            value: 33.924
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-tex
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: 46989137a86843e03a6195de44b09deda022eec7
        metrics:
          - type: map_at_1
            value: 15.139
          - type: map_at_10
            value: 21.063000000000002
          - type: map_at_100
            value: 22.070999999999998
          - type: map_at_1000
            value: 22.203999999999997
          - type: map_at_3
            value: 19.204
          - type: map_at_5
            value: 20.185
          - type: mrr_at_1
            value: 18.445
          - type: mrr_at_10
            value: 24.698999999999998
          - type: mrr_at_100
            value: 25.569999999999997
          - type: mrr_at_1000
            value: 25.659
          - type: mrr_at_3
            value: 22.866
          - type: mrr_at_5
            value: 23.868000000000002
          - type: ndcg_at_1
            value: 18.445
          - type: ndcg_at_10
            value: 24.998
          - type: ndcg_at_100
            value: 29.982999999999997
          - type: ndcg_at_1000
            value: 33.271
          - type: ndcg_at_3
            value: 21.692
          - type: ndcg_at_5
            value: 23.102
          - type: precision_at_1
            value: 18.445
          - type: precision_at_10
            value: 4.542
          - type: precision_at_100
            value: 0.84
          - type: precision_at_1000
            value: 0.129
          - type: precision_at_3
            value: 10.381
          - type: precision_at_5
            value: 7.356999999999999
          - type: recall_at_1
            value: 15.139
          - type: recall_at_10
            value: 33.268
          - type: recall_at_100
            value: 55.87
          - type: recall_at_1000
            value: 79.841
          - type: recall_at_3
            value: 23.629
          - type: recall_at_5
            value: 27.541
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-unix
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
        metrics:
          - type: map_at_1
            value: 24.317
          - type: map_at_10
            value: 31.661
          - type: map_at_100
            value: 32.844
          - type: map_at_1000
            value: 32.952
          - type: map_at_3
            value: 29.118
          - type: map_at_5
            value: 30.410999999999998
          - type: mrr_at_1
            value: 28.544999999999998
          - type: mrr_at_10
            value: 36.059999999999995
          - type: mrr_at_100
            value: 36.983
          - type: mrr_at_1000
            value: 37.047999999999995
          - type: mrr_at_3
            value: 33.738
          - type: mrr_at_5
            value: 34.871
          - type: ndcg_at_1
            value: 28.544999999999998
          - type: ndcg_at_10
            value: 36.546
          - type: ndcg_at_100
            value: 42.039
          - type: ndcg_at_1000
            value: 44.61
          - type: ndcg_at_3
            value: 31.835
          - type: ndcg_at_5
            value: 33.755
          - type: precision_at_1
            value: 28.544999999999998
          - type: precision_at_10
            value: 6.0729999999999995
          - type: precision_at_100
            value: 0.991
          - type: precision_at_1000
            value: 0.132
          - type: precision_at_3
            value: 13.993
          - type: precision_at_5
            value: 9.795
          - type: recall_at_1
            value: 24.317
          - type: recall_at_10
            value: 47.227000000000004
          - type: recall_at_100
            value: 71.245
          - type: recall_at_1000
            value: 89.584
          - type: recall_at_3
            value: 34.292
          - type: recall_at_5
            value: 39.129000000000005
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-webmasters
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: 160c094312a0e1facb97e55eeddb698c0abe3571
        metrics:
          - type: map_at_1
            value: 24.169999999999998
          - type: map_at_10
            value: 32.669
          - type: map_at_100
            value: 34.195
          - type: map_at_1000
            value: 34.438
          - type: map_at_3
            value: 30.264000000000003
          - type: map_at_5
            value: 31.694
          - type: mrr_at_1
            value: 29.249000000000002
          - type: mrr_at_10
            value: 37.230999999999995
          - type: mrr_at_100
            value: 38.216
          - type: mrr_at_1000
            value: 38.291
          - type: mrr_at_3
            value: 35.178
          - type: mrr_at_5
            value: 36.453
          - type: ndcg_at_1
            value: 29.249000000000002
          - type: ndcg_at_10
            value: 37.967
          - type: ndcg_at_100
            value: 43.514
          - type: ndcg_at_1000
            value: 46.63
          - type: ndcg_at_3
            value: 34.437
          - type: ndcg_at_5
            value: 36.299
          - type: precision_at_1
            value: 29.249000000000002
          - type: precision_at_10
            value: 7.055
          - type: precision_at_100
            value: 1.431
          - type: precision_at_1000
            value: 0.23800000000000002
          - type: precision_at_3
            value: 16.469
          - type: precision_at_5
            value: 11.897
          - type: recall_at_1
            value: 24.169999999999998
          - type: recall_at_10
            value: 47.577000000000005
          - type: recall_at_100
            value: 72.375
          - type: recall_at_1000
            value: 92.711
          - type: recall_at_3
            value: 36.551
          - type: recall_at_5
            value: 41.739
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-wordpress
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
        metrics:
          - type: map_at_1
            value: 18.306
          - type: map_at_10
            value: 24.882
          - type: map_at_100
            value: 25.898
          - type: map_at_1000
            value: 25.991999999999997
          - type: map_at_3
            value: 22.506999999999998
          - type: map_at_5
            value: 23.708000000000002
          - type: mrr_at_1
            value: 20.148
          - type: mrr_at_10
            value: 27.014
          - type: mrr_at_100
            value: 27.886
          - type: mrr_at_1000
            value: 27.955999999999996
          - type: mrr_at_3
            value: 24.553
          - type: mrr_at_5
            value: 25.801000000000002
          - type: ndcg_at_1
            value: 20.148
          - type: ndcg_at_10
            value: 29.211
          - type: ndcg_at_100
            value: 34.307
          - type: ndcg_at_1000
            value: 36.875
          - type: ndcg_at_3
            value: 24.333
          - type: ndcg_at_5
            value: 26.455000000000002
          - type: precision_at_1
            value: 20.148
          - type: precision_at_10
            value: 4.713
          - type: precision_at_100
            value: 0.784
          - type: precision_at_1000
            value: 0.11
          - type: precision_at_3
            value: 10.290000000000001
          - type: precision_at_5
            value: 7.394
          - type: recall_at_1
            value: 18.306
          - type: recall_at_10
            value: 40.591
          - type: recall_at_100
            value: 64.18199999999999
          - type: recall_at_1000
            value: 83.646
          - type: recall_at_3
            value: 27.528999999999996
          - type: recall_at_5
            value: 32.619
      - task:
          type: Retrieval
        dataset:
          type: mteb/climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
          revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
        metrics:
          - type: map_at_1
            value: 7.872999999999999
          - type: map_at_10
            value: 13.361999999999998
          - type: map_at_100
            value: 15.024999999999999
          - type: map_at_1000
            value: 15.254000000000001
          - type: map_at_3
            value: 10.895000000000001
          - type: map_at_5
            value: 12.131
          - type: mrr_at_1
            value: 16.743
          - type: mrr_at_10
            value: 26.033
          - type: mrr_at_100
            value: 27.290999999999997
          - type: mrr_at_1000
            value: 27.356
          - type: mrr_at_3
            value: 22.573
          - type: mrr_at_5
            value: 24.336
          - type: ndcg_at_1
            value: 16.743
          - type: ndcg_at_10
            value: 19.675
          - type: ndcg_at_100
            value: 27.345000000000002
          - type: ndcg_at_1000
            value: 31.685999999999996
          - type: ndcg_at_3
            value: 15.036
          - type: ndcg_at_5
            value: 16.643
          - type: precision_at_1
            value: 16.743
          - type: precision_at_10
            value: 6.43
          - type: precision_at_100
            value: 1.4749999999999999
          - type: precision_at_1000
            value: 0.22599999999999998
          - type: precision_at_3
            value: 11.01
          - type: precision_at_5
            value: 8.924999999999999
          - type: recall_at_1
            value: 7.872999999999999
          - type: recall_at_10
            value: 25.026
          - type: recall_at_100
            value: 52.245
          - type: recall_at_1000
            value: 76.949
          - type: recall_at_3
            value: 13.962
          - type: recall_at_5
            value: 18.085
      - task:
          type: Retrieval
        dataset:
          type: mteb/dbpedia
          name: MTEB DBPedia
          config: default
          split: test
          revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
        metrics:
          - type: map_at_1
            value: 8.586
          - type: map_at_10
            value: 17.098
          - type: map_at_100
            value: 23.857
          - type: map_at_1000
            value: 25.357000000000003
          - type: map_at_3
            value: 12.574
          - type: map_at_5
            value: 14.374999999999998
          - type: mrr_at_1
            value: 59.5
          - type: mrr_at_10
            value: 68.199
          - type: mrr_at_100
            value: 68.699
          - type: mrr_at_1000
            value: 68.71199999999999
          - type: mrr_at_3
            value: 65.958
          - type: mrr_at_5
            value: 67.38300000000001
          - type: ndcg_at_1
            value: 48.625
          - type: ndcg_at_10
            value: 36.064
          - type: ndcg_at_100
            value: 41.137
          - type: ndcg_at_1000
            value: 49.08
          - type: ndcg_at_3
            value: 39.615
          - type: ndcg_at_5
            value: 37.080999999999996
          - type: precision_at_1
            value: 59.5
          - type: precision_at_10
            value: 28.050000000000004
          - type: precision_at_100
            value: 9.133
          - type: precision_at_1000
            value: 1.8960000000000001
          - type: precision_at_3
            value: 42.75
          - type: precision_at_5
            value: 35.25
          - type: recall_at_1
            value: 8.586
          - type: recall_at_10
            value: 23.148
          - type: recall_at_100
            value: 48.479
          - type: recall_at_1000
            value: 73.75500000000001
          - type: recall_at_3
            value: 13.718
          - type: recall_at_5
            value: 16.862
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 47.440000000000005
          - type: f1
            value: 40.19931464357708
      - task:
          type: Retrieval
        dataset:
          type: mteb/fever
          name: MTEB FEVER
          config: default
          split: test
          revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
        metrics:
          - type: map_at_1
            value: 50.544
          - type: map_at_10
            value: 63.495000000000005
          - type: map_at_100
            value: 64.005
          - type: map_at_1000
            value: 64.023
          - type: map_at_3
            value: 60.937
          - type: map_at_5
            value: 62.556
          - type: mrr_at_1
            value: 54.379999999999995
          - type: mrr_at_10
            value: 67.266
          - type: mrr_at_100
            value: 67.647
          - type: mrr_at_1000
            value: 67.65299999999999
          - type: mrr_at_3
            value: 64.85600000000001
          - type: mrr_at_5
            value: 66.402
          - type: ndcg_at_1
            value: 54.379999999999995
          - type: ndcg_at_10
            value: 69.977
          - type: ndcg_at_100
            value: 72.045
          - type: ndcg_at_1000
            value: 72.404
          - type: ndcg_at_3
            value: 65.12299999999999
          - type: ndcg_at_5
            value: 67.843
          - type: precision_at_1
            value: 54.379999999999995
          - type: precision_at_10
            value: 9.469
          - type: precision_at_100
            value: 1.0670000000000002
          - type: precision_at_1000
            value: 0.11199999999999999
          - type: precision_at_3
            value: 26.533
          - type: precision_at_5
            value: 17.441000000000003
          - type: recall_at_1
            value: 50.544
          - type: recall_at_10
            value: 86.253
          - type: recall_at_100
            value: 94.92699999999999
          - type: recall_at_1000
            value: 97.301
          - type: recall_at_3
            value: 73.215
          - type: recall_at_5
            value: 79.81899999999999
      - task:
          type: Retrieval
        dataset:
          type: mteb/fiqa
          name: MTEB FiQA2018
          config: default
          split: test
          revision: 27a168819829fe9bcd655c2df245fb19452e8e06
        metrics:
          - type: map_at_1
            value: 18.027
          - type: map_at_10
            value: 28.347
          - type: map_at_100
            value: 30.123
          - type: map_at_1000
            value: 30.284
          - type: map_at_3
            value: 24.862000000000002
          - type: map_at_5
            value: 26.698
          - type: mrr_at_1
            value: 34.105000000000004
          - type: mrr_at_10
            value: 42.747
          - type: mrr_at_100
            value: 43.672
          - type: mrr_at_1000
            value: 43.723
          - type: mrr_at_3
            value: 40.303
          - type: mrr_at_5
            value: 41.6
          - type: ndcg_at_1
            value: 34.105000000000004
          - type: ndcg_at_10
            value: 35.495
          - type: ndcg_at_100
            value: 42.447
          - type: ndcg_at_1000
            value: 45.537
          - type: ndcg_at_3
            value: 31.911
          - type: ndcg_at_5
            value: 32.995999999999995
          - type: precision_at_1
            value: 34.105000000000004
          - type: precision_at_10
            value: 9.738
          - type: precision_at_100
            value: 1.687
          - type: precision_at_1000
            value: 0.22399999999999998
          - type: precision_at_3
            value: 20.988
          - type: precision_at_5
            value: 15.432000000000002
          - type: recall_at_1
            value: 18.027
          - type: recall_at_10
            value: 41.897
          - type: recall_at_100
            value: 67.949
          - type: recall_at_1000
            value: 86.735
          - type: recall_at_3
            value: 29.342000000000002
          - type: recall_at_5
            value: 34.365
      - task:
          type: Retrieval
        dataset:
          type: mteb/hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
          revision: ab518f4d6fcca38d87c25209f94beba119d02014
        metrics:
          - type: map_at_1
            value: 35.409
          - type: map_at_10
            value: 55.894
          - type: map_at_100
            value: 56.838
          - type: map_at_1000
            value: 56.901999999999994
          - type: map_at_3
            value: 52.074
          - type: map_at_5
            value: 54.429
          - type: mrr_at_1
            value: 70.817
          - type: mrr_at_10
            value: 78.532
          - type: mrr_at_100
            value: 78.755
          - type: mrr_at_1000
            value: 78.763
          - type: mrr_at_3
            value: 77.171
          - type: mrr_at_5
            value: 78.03
          - type: ndcg_at_1
            value: 70.817
          - type: ndcg_at_10
            value: 64.995
          - type: ndcg_at_100
            value: 68.27499999999999
          - type: ndcg_at_1000
            value: 69.525
          - type: ndcg_at_3
            value: 59.401
          - type: ndcg_at_5
            value: 62.471
          - type: precision_at_1
            value: 70.817
          - type: precision_at_10
            value: 13.957
          - type: precision_at_100
            value: 1.651
          - type: precision_at_1000
            value: 0.182
          - type: precision_at_3
            value: 38.267
          - type: precision_at_5
            value: 25.385999999999996
          - type: recall_at_1
            value: 35.409
          - type: recall_at_10
            value: 69.784
          - type: recall_at_100
            value: 82.54599999999999
          - type: recall_at_1000
            value: 90.824
          - type: recall_at_3
            value: 57.4
          - type: recall_at_5
            value: 63.464
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 79.54679999999999
          - type: ap
            value: 73.47419341239319
          - type: f1
            value: 79.4507801491805
      - task:
          type: Retrieval
        dataset:
          type: mteb/msmarco
          name: MTEB MSMARCO
          config: default
          split: test
          revision: c5a29a104738b98a9e76336939199e264163d4a0
        metrics:
          - type: map_at_1
            value: 2.465
          - type: map_at_10
            value: 15.237
          - type: map_at_100
            value: 39.974
          - type: map_at_1000
            value: 47.487
          - type: map_at_3
            value: 6.798
          - type: map_at_5
            value: 9.635
          - type: mrr_at_1
            value: 93.023
          - type: mrr_at_10
            value: 94.961
          - type: mrr_at_100
            value: 95.041
          - type: mrr_at_1000
            value: 95.041
          - type: mrr_at_3
            value: 94.961
          - type: mrr_at_5
            value: 94.961
          - type: ndcg_at_1
            value: 75.194
          - type: ndcg_at_10
            value: 68.715
          - type: ndcg_at_100
            value: 64.191
          - type: ndcg_at_1000
            value: 71.192
          - type: ndcg_at_3
            value: 73.085
          - type: ndcg_at_5
            value: 72.817
          - type: precision_at_1
            value: 93.023
          - type: precision_at_10
            value: 76.512
          - type: precision_at_100
            value: 37.698
          - type: precision_at_1000
            value: 6.851
          - type: precision_at_3
            value: 88.372
          - type: precision_at_5
            value: 84.651
          - type: recall_at_1
            value: 2.465
          - type: recall_at_10
            value: 16.181
          - type: recall_at_100
            value: 52.515
          - type: recall_at_1000
            value: 77.483
          - type: recall_at_3
            value: 6.922000000000001
          - type: recall_at_5
            value: 9.945
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 90.48335613315092
          - type: f1
            value: 90.3575395041569
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 58.10533515731875
          - type: f1
            value: 41.93379347349137
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 65.60524546065906
          - type: f1
            value: 62.37255545904355
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 71.049092131809
          - type: f1
            value: 70.19452987909062
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 31.698383065423773
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 27.763066538701253
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 30.320838995172895
          - type: mrr
            value: 31.223609863654694
      - task:
          type: Retrieval
        dataset:
          type: mteb/nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
          revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
        metrics:
          - type: map_at_1
            value: 5.127000000000001
          - type: map_at_10
            value: 11.395
          - type: map_at_100
            value: 14.252999999999998
          - type: map_at_1000
            value: 15.601
          - type: map_at_3
            value: 8.327
          - type: map_at_5
            value: 9.637
          - type: mrr_at_1
            value: 42.105
          - type: mrr_at_10
            value: 50.495000000000005
          - type: mrr_at_100
            value: 51.175000000000004
          - type: mrr_at_1000
            value: 51.217999999999996
          - type: mrr_at_3
            value: 48.452
          - type: mrr_at_5
            value: 49.830000000000005
          - type: ndcg_at_1
            value: 40.093
          - type: ndcg_at_10
            value: 31.806
          - type: ndcg_at_100
            value: 28.949
          - type: ndcg_at_1000
            value: 37.655
          - type: ndcg_at_3
            value: 36.692
          - type: ndcg_at_5
            value: 34.348
          - type: precision_at_1
            value: 41.486000000000004
          - type: precision_at_10
            value: 23.777
          - type: precision_at_100
            value: 7.457999999999999
          - type: precision_at_1000
            value: 2.018
          - type: precision_at_3
            value: 34.572
          - type: precision_at_5
            value: 29.536
          - type: recall_at_1
            value: 5.127000000000001
          - type: recall_at_10
            value: 15.427
          - type: recall_at_100
            value: 29.206
          - type: recall_at_1000
            value: 60.716
          - type: recall_at_3
            value: 9.261999999999999
          - type: recall_at_5
            value: 11.677999999999999
      - task:
          type: Retrieval
        dataset:
          type: mteb/nq
          name: MTEB NQ
          config: default
          split: test
          revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
        metrics:
          - type: map_at_1
            value: 29.275000000000002
          - type: map_at_10
            value: 44.374
          - type: map_at_100
            value: 45.405
          - type: map_at_1000
            value: 45.437
          - type: map_at_3
            value: 40.028000000000006
          - type: map_at_5
            value: 42.492999999999995
          - type: mrr_at_1
            value: 32.966
          - type: mrr_at_10
            value: 46.905
          - type: mrr_at_100
            value: 47.699999999999996
          - type: mrr_at_1000
            value: 47.721000000000004
          - type: mrr_at_3
            value: 43.308
          - type: mrr_at_5
            value: 45.458
          - type: ndcg_at_1
            value: 32.966
          - type: ndcg_at_10
            value: 52.151
          - type: ndcg_at_100
            value: 56.565
          - type: ndcg_at_1000
            value: 57.315000000000005
          - type: ndcg_at_3
            value: 43.973
          - type: ndcg_at_5
            value: 48.125
          - type: precision_at_1
            value: 32.966
          - type: precision_at_10
            value: 8.72
          - type: precision_at_100
            value: 1.121
          - type: precision_at_1000
            value: 0.11900000000000001
          - type: precision_at_3
            value: 20.085
          - type: precision_at_5
            value: 14.45
          - type: recall_at_1
            value: 29.275000000000002
          - type: recall_at_10
            value: 73.288
          - type: recall_at_100
            value: 92.56
          - type: recall_at_1000
            value: 98.139
          - type: recall_at_3
            value: 52.11
          - type: recall_at_5
            value: 61.696
      - task:
          type: Retrieval
        dataset:
          type: mteb/quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
          revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
        metrics:
          - type: map_at_1
            value: 67.537
          - type: map_at_10
            value: 80.879
          - type: map_at_100
            value: 81.577
          - type: map_at_1000
            value: 81.602
          - type: map_at_3
            value: 77.981
          - type: map_at_5
            value: 79.768
          - type: mrr_at_1
            value: 77.69
          - type: mrr_at_10
            value: 84.417
          - type: mrr_at_100
            value: 84.59299999999999
          - type: mrr_at_1000
            value: 84.596
          - type: mrr_at_3
            value: 83.26
          - type: mrr_at_5
            value: 84.023
          - type: ndcg_at_1
            value: 77.72
          - type: ndcg_at_10
            value: 85.021
          - type: ndcg_at_100
            value: 86.66199999999999
          - type: ndcg_at_1000
            value: 86.87700000000001
          - type: ndcg_at_3
            value: 81.90899999999999
          - type: ndcg_at_5
            value: 83.55
          - type: precision_at_1
            value: 77.72
          - type: precision_at_10
            value: 12.876999999999999
          - type: precision_at_100
            value: 1.498
          - type: precision_at_1000
            value: 0.156
          - type: precision_at_3
            value: 35.653
          - type: precision_at_5
            value: 23.476
          - type: recall_at_1
            value: 67.537
          - type: recall_at_10
            value: 92.878
          - type: recall_at_100
            value: 98.786
          - type: recall_at_1000
            value: 99.892
          - type: recall_at_3
            value: 83.968
          - type: recall_at_5
            value: 88.571
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 49.16241148820256
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
        metrics:
          - type: v_measure
            value: 61.54900278834193
      - task:
          type: Retrieval
        dataset:
          type: mteb/scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
          revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
        metrics:
          - type: map_at_1
            value: 4.173
          - type: map_at_10
            value: 10.120999999999999
          - type: map_at_100
            value: 11.956
          - type: map_at_1000
            value: 12.219
          - type: map_at_3
            value: 7.3580000000000005
          - type: map_at_5
            value: 8.799
          - type: mrr_at_1
            value: 20.599999999999998
          - type: mrr_at_10
            value: 30.326999999999998
          - type: mrr_at_100
            value: 31.412000000000003
          - type: mrr_at_1000
            value: 31.480000000000004
          - type: mrr_at_3
            value: 26.983
          - type: mrr_at_5
            value: 28.938000000000002
          - type: ndcg_at_1
            value: 20.599999999999998
          - type: ndcg_at_10
            value: 17.365
          - type: ndcg_at_100
            value: 24.623
          - type: ndcg_at_1000
            value: 29.65
          - type: ndcg_at_3
            value: 16.509999999999998
          - type: ndcg_at_5
            value: 14.542
          - type: precision_at_1
            value: 20.599999999999998
          - type: precision_at_10
            value: 8.98
          - type: precision_at_100
            value: 1.939
          - type: precision_at_1000
            value: 0.315
          - type: precision_at_3
            value: 15.4
          - type: precision_at_5
            value: 12.8
          - type: recall_at_1
            value: 4.173
          - type: recall_at_10
            value: 18.212999999999997
          - type: recall_at_100
            value: 39.363
          - type: recall_at_1000
            value: 63.94499999999999
          - type: recall_at_3
            value: 9.373
          - type: recall_at_5
            value: 13.008000000000001
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
        metrics:
          - type: cos_sim_pearson
            value: 83.87431570350371
          - type: cos_sim_spearman
            value: 79.25074443392982
          - type: euclidean_pearson
            value: 80.9080554083112
          - type: euclidean_spearman
            value: 79.2507399109411
          - type: manhattan_pearson
            value: 80.90956765983888
          - type: manhattan_spearman
            value: 79.20576643481074
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 83.48662954870734
          - type: cos_sim_spearman
            value: 73.70799073411621
          - type: euclidean_pearson
            value: 80.49103960387095
          - type: euclidean_spearman
            value: 73.7055087532169
          - type: manhattan_pearson
            value: 80.5783519196888
          - type: manhattan_spearman
            value: 73.90297846138822
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 80.70595293210951
          - type: cos_sim_spearman
            value: 82.31727223815786
          - type: euclidean_pearson
            value: 81.5306062072953
          - type: euclidean_spearman
            value: 82.31721735735299
          - type: manhattan_pearson
            value: 81.43418231655517
          - type: manhattan_spearman
            value: 82.20026619822572
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 81.24706825802423
          - type: cos_sim_spearman
            value: 80.06920825678749
          - type: euclidean_pearson
            value: 80.48334698932342
          - type: euclidean_spearman
            value: 80.06918911208002
          - type: manhattan_pearson
            value: 80.40681414406772
          - type: manhattan_spearman
            value: 80.0102866792831
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 86.16929217014857
          - type: cos_sim_spearman
            value: 87.2100080395613
          - type: euclidean_pearson
            value: 86.4066737251256
          - type: euclidean_spearman
            value: 87.20998056215564
          - type: manhattan_pearson
            value: 86.39080868256596
          - type: manhattan_spearman
            value: 87.1927937048571
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 80.53662089031329
          - type: cos_sim_spearman
            value: 82.33056272292711
          - type: euclidean_pearson
            value: 81.40056519211387
          - type: euclidean_spearman
            value: 82.33056272292711
          - type: manhattan_pearson
            value: 81.27845573928735
          - type: manhattan_spearman
            value: 82.22192854693785
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 87.66415281856406
          - type: cos_sim_spearman
            value: 87.58094863633612
          - type: euclidean_pearson
            value: 88.25085288996081
          - type: euclidean_spearman
            value: 87.58094863633612
          - type: manhattan_pearson
            value: 88.34016528668018
          - type: manhattan_spearman
            value: 87.67773968789653
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 65.91354529556227
          - type: cos_sim_spearman
            value: 66.29904599827411
          - type: euclidean_pearson
            value: 66.99135025654104
          - type: euclidean_spearman
            value: 66.29904599827411
          - type: manhattan_pearson
            value: 67.29167796154489
          - type: manhattan_spearman
            value: 66.54035688112117
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 83.17371544155577
          - type: cos_sim_spearman
            value: 84.91600230031912
          - type: euclidean_pearson
            value: 84.58535536355062
          - type: euclidean_spearman
            value: 84.91603828194314
          - type: manhattan_pearson
            value: 84.52786631260929
          - type: manhattan_spearman
            value: 84.8279451537192
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 79.90931256553237
          - type: mrr
            value: 94.55430462783404
      - task:
          type: Retrieval
        dataset:
          type: mteb/scifact
          name: MTEB SciFact
          config: default
          split: test
          revision: 0228b52cf27578f30900b9e5271d331663a030d7
        metrics:
          - type: map_at_1
            value: 52.233
          - type: map_at_10
            value: 63.135
          - type: map_at_100
            value: 63.766999999999996
          - type: map_at_1000
            value: 63.788999999999994
          - type: map_at_3
            value: 60.374
          - type: map_at_5
            value: 62.11600000000001
          - type: mrr_at_1
            value: 54.333
          - type: mrr_at_10
            value: 64.208
          - type: mrr_at_100
            value: 64.687
          - type: mrr_at_1000
            value: 64.705
          - type: mrr_at_3
            value: 62.166999999999994
          - type: mrr_at_5
            value: 63.532999999999994
          - type: ndcg_at_1
            value: 54.333
          - type: ndcg_at_10
            value: 67.965
          - type: ndcg_at_100
            value: 70.709
          - type: ndcg_at_1000
            value: 71.221
          - type: ndcg_at_3
            value: 63.376
          - type: ndcg_at_5
            value: 65.977
          - type: precision_at_1
            value: 54.333
          - type: precision_at_10
            value: 9.167
          - type: precision_at_100
            value: 1.0630000000000002
          - type: precision_at_1000
            value: 0.11100000000000002
          - type: precision_at_3
            value: 25
          - type: precision_at_5
            value: 16.733
          - type: recall_at_1
            value: 52.233
          - type: recall_at_10
            value: 81.289
          - type: recall_at_100
            value: 93.767
          - type: recall_at_1000
            value: 97.667
          - type: recall_at_3
            value: 69.294
          - type: recall_at_5
            value: 75.64999999999999
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.8069306930693
          - type: cos_sim_ap
            value: 95.01715408250185
          - type: cos_sim_f1
            value: 90.27431421446383
          - type: cos_sim_precision
            value: 90.04975124378109
          - type: cos_sim_recall
            value: 90.5
          - type: dot_accuracy
            value: 99.8069306930693
          - type: dot_ap
            value: 95.01715420720572
          - type: dot_f1
            value: 90.27431421446383
          - type: dot_precision
            value: 90.04975124378109
          - type: dot_recall
            value: 90.5
          - type: euclidean_accuracy
            value: 99.8069306930693
          - type: euclidean_ap
            value: 95.01715408250185
          - type: euclidean_f1
            value: 90.27431421446383
          - type: euclidean_precision
            value: 90.04975124378109
          - type: euclidean_recall
            value: 90.5
          - type: manhattan_accuracy
            value: 99.8108910891089
          - type: manhattan_ap
            value: 95.08344895081773
          - type: manhattan_f1
            value: 90.2672718103883
          - type: manhattan_precision
            value: 91.04781281790437
          - type: manhattan_recall
            value: 89.5
          - type: max_accuracy
            value: 99.8108910891089
          - type: max_ap
            value: 95.08344895081773
          - type: max_f1
            value: 90.27431421446383
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 56.77496100801627
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 32.03980982336066
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 49.92590367093363
          - type: mrr
            value: 50.72744249214838
      - task:
          type: Summarization
        dataset:
          type: mteb/summeval
          name: MTEB SummEval
          config: default
          split: test
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
        metrics:
          - type: cos_sim_pearson
            value: 29.873523128424296
          - type: cos_sim_spearman
            value: 29.77696422152863
          - type: dot_pearson
            value: 29.873538265911392
          - type: dot_spearman
            value: 29.77696422152863
      - task:
          type: Retrieval
        dataset:
          type: mteb/trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
          revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
        metrics:
          - type: map_at_1
            value: 0.16
          - type: map_at_10
            value: 1.196
          - type: map_at_100
            value: 6.525
          - type: map_at_1000
            value: 17.379
          - type: map_at_3
            value: 0.43299999999999994
          - type: map_at_5
            value: 0.687
          - type: mrr_at_1
            value: 64
          - type: mrr_at_10
            value: 76.467
          - type: mrr_at_100
            value: 76.533
          - type: mrr_at_1000
            value: 76.533
          - type: mrr_at_3
            value: 73.667
          - type: mrr_at_5
            value: 75.467
          - type: ndcg_at_1
            value: 56.99999999999999
          - type: ndcg_at_10
            value: 52.614000000000004
          - type: ndcg_at_100
            value: 41.677
          - type: ndcg_at_1000
            value: 41.565000000000005
          - type: ndcg_at_3
            value: 55.765
          - type: ndcg_at_5
            value: 55.553
          - type: precision_at_1
            value: 64
          - type: precision_at_10
            value: 56.8
          - type: precision_at_100
            value: 43.18
          - type: precision_at_1000
            value: 19.016
          - type: precision_at_3
            value: 60
          - type: precision_at_5
            value: 60.4
          - type: recall_at_1
            value: 0.16
          - type: recall_at_10
            value: 1.4909999999999999
          - type: recall_at_100
            value: 10.238999999999999
          - type: recall_at_1000
            value: 40.492
          - type: recall_at_3
            value: 0.486
          - type: recall_at_5
            value: 0.8099999999999999
      - task:
          type: Retrieval
        dataset:
          type: mteb/touche2020
          name: MTEB Touche2020
          config: default
          split: test
          revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
        metrics:
          - type: map_at_1
            value: 1.078
          - type: map_at_10
            value: 4.777
          - type: map_at_100
            value: 8.552
          - type: map_at_1000
            value: 9.831
          - type: map_at_3
            value: 2.33
          - type: map_at_5
            value: 3.102
          - type: mrr_at_1
            value: 14.285999999999998
          - type: mrr_at_10
            value: 25.688
          - type: mrr_at_100
            value: 27.211000000000002
          - type: mrr_at_1000
            value: 27.262999999999998
          - type: mrr_at_3
            value: 20.408
          - type: mrr_at_5
            value: 23.265
          - type: ndcg_at_1
            value: 13.264999999999999
          - type: ndcg_at_10
            value: 13.225999999999999
          - type: ndcg_at_100
            value: 23.873
          - type: ndcg_at_1000
            value: 35.357
          - type: ndcg_at_3
            value: 11.162999999999998
          - type: ndcg_at_5
            value: 12.202
          - type: precision_at_1
            value: 14.285999999999998
          - type: precision_at_10
            value: 13.469000000000001
          - type: precision_at_100
            value: 5.592
          - type: precision_at_1000
            value: 1.278
          - type: precision_at_3
            value: 12.245000000000001
          - type: precision_at_5
            value: 13.877999999999998
          - type: recall_at_1
            value: 1.078
          - type: recall_at_10
            value: 10.094
          - type: recall_at_100
            value: 35.723
          - type: recall_at_1000
            value: 70.161
          - type: recall_at_3
            value: 3.078
          - type: recall_at_5
            value: 5.171
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
        metrics:
          - type: accuracy
            value: 63.526
          - type: ap
            value: 11.499475362455422
          - type: f1
            value: 49.007047166853305
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 61.77136389360498
          - type: f1
            value: 61.60711673348749
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 40.700597517044926
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 86.59474280264648
          - type: cos_sim_ap
            value: 75.2354882574253
          - type: cos_sim_f1
            value: 69.23641703377386
          - type: cos_sim_precision
            value: 64.55956184390689
          - type: cos_sim_recall
            value: 74.64379947229551
          - type: dot_accuracy
            value: 86.59474280264648
          - type: dot_ap
            value: 75.2355004100119
          - type: dot_f1
            value: 69.23641703377386
          - type: dot_precision
            value: 64.55956184390689
          - type: dot_recall
            value: 74.64379947229551
          - type: euclidean_accuracy
            value: 86.59474280264648
          - type: euclidean_ap
            value: 75.23549109559548
          - type: euclidean_f1
            value: 69.23641703377386
          - type: euclidean_precision
            value: 64.55956184390689
          - type: euclidean_recall
            value: 74.64379947229551
          - type: manhattan_accuracy
            value: 86.46361089586935
          - type: manhattan_ap
            value: 74.97783476285602
          - type: manhattan_f1
            value: 69.16030534351145
          - type: manhattan_precision
            value: 66.78132678132678
          - type: manhattan_recall
            value: 71.71503957783642
          - type: max_accuracy
            value: 86.59474280264648
          - type: max_ap
            value: 75.2355004100119
          - type: max_f1
            value: 69.23641703377386
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 89.03830480847596
          - type: cos_sim_ap
            value: 85.95577773962282
          - type: cos_sim_f1
            value: 78.27735233907043
          - type: cos_sim_precision
            value: 77.10231516056758
          - type: cos_sim_recall
            value: 79.48875885432707
          - type: dot_accuracy
            value: 89.03830480847596
          - type: dot_ap
            value: 85.95578535080806
          - type: dot_f1
            value: 78.27735233907043
          - type: dot_precision
            value: 77.10231516056758
          - type: dot_recall
            value: 79.48875885432707
          - type: euclidean_accuracy
            value: 89.03830480847596
          - type: euclidean_ap
            value: 85.95573921817162
          - type: euclidean_f1
            value: 78.27735233907043
          - type: euclidean_precision
            value: 77.10231516056758
          - type: euclidean_recall
            value: 79.48875885432707
          - type: manhattan_accuracy
            value: 88.9024721543059
          - type: manhattan_ap
            value: 85.89551017445959
          - type: manhattan_f1
            value: 78.19396487013964
          - type: manhattan_precision
            value: 76.28148799062683
          - type: manhattan_recall
            value: 80.20480443486295
          - type: max_accuracy
            value: 89.03830480847596
          - type: max_ap
            value: 85.95578535080806
          - type: max_f1
            value: 78.27735233907043