|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-large-xlsr-53 |
|
tags: |
|
- automatic-speech-recognition |
|
- ./sample_speech.py |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: en-xlsr |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# en-xlsr |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the ./SAMPLE_SPEECH.PY - NA dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5356 |
|
- Cer: 0.0853 |
|
- Wer: 0.1884 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 4 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 64 |
|
- total_eval_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.01 |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Cer | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:| |
|
| 0.7055 | 2.79 | 600 | 0.4911 | 0.1304 | 0.3308 | |
|
| 0.3761 | 5.58 | 1200 | 0.3984 | 0.1053 | 0.2533 | |
|
| 0.278 | 8.37 | 1800 | 0.4070 | 0.1024 | 0.2445 | |
|
| 0.2196 | 11.16 | 2400 | 0.4033 | 0.0974 | 0.2243 | |
|
| 0.1842 | 13.95 | 3000 | 0.4270 | 0.0928 | 0.2106 | |
|
| 0.1533 | 16.74 | 3600 | 0.4582 | 0.0916 | 0.2071 | |
|
| 0.1257 | 19.53 | 4200 | 0.4685 | 0.0901 | 0.2001 | |
|
| 0.1071 | 22.33 | 4800 | 0.5088 | 0.0878 | 0.1965 | |
|
| 0.0967 | 25.12 | 5400 | 0.5224 | 0.0872 | 0.1913 | |
|
| 0.0839 | 27.91 | 6000 | 0.5379 | 0.0860 | 0.1885 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.1 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.1 |
|
|