xlsr_enko_exp2 / README.md
yesj1234's picture
Upload folder using huggingface_hub
192d4f9
---
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- automatic-speech-recognition
- ./sample_speech.py
- generated_from_trainer
metrics:
- wer
model-index:
- name: en-xlsr
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# en-xlsr
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the ./SAMPLE_SPEECH.PY - NA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5356
- Cer: 0.0853
- Wer: 0.1884
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 0.7055 | 2.79 | 600 | 0.4911 | 0.1304 | 0.3308 |
| 0.3761 | 5.58 | 1200 | 0.3984 | 0.1053 | 0.2533 |
| 0.278 | 8.37 | 1800 | 0.4070 | 0.1024 | 0.2445 |
| 0.2196 | 11.16 | 2400 | 0.4033 | 0.0974 | 0.2243 |
| 0.1842 | 13.95 | 3000 | 0.4270 | 0.0928 | 0.2106 |
| 0.1533 | 16.74 | 3600 | 0.4582 | 0.0916 | 0.2071 |
| 0.1257 | 19.53 | 4200 | 0.4685 | 0.0901 | 0.2001 |
| 0.1071 | 22.33 | 4800 | 0.5088 | 0.0878 | 0.1965 |
| 0.0967 | 25.12 | 5400 | 0.5224 | 0.0872 | 0.1913 |
| 0.0839 | 27.91 | 6000 | 0.5379 | 0.0860 | 0.1885 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu121
- Datasets 2.14.5
- Tokenizers 0.14.1