yentinglin commited on
Commit
e0c90fe
1 Parent(s): d8ea923

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -7
README.md CHANGED
@@ -17,16 +17,84 @@ extra_gated_fields:
17
  Any utilization of the Taiwan LLM repository mandates the explicit acknowledgment and attribution to the original author: checkbox
18
  使用Taiwan LLM必須明確地承認和歸功於優必達株式會社 Ubitus 以及原始作者: checkbox
19
  ---
20
- # Taiwan LLM based on LLaMa2-7b
21
 
22
- continue pretraining on 20 billion tokens in traditional mandarin.
23
 
24
- This version does NOT include commoncrawl.
25
 
26
- # 🌟 Checkout New [Taiwan-LLM UI](http://www.twllm.com) 🌟
 
 
 
 
27
 
28
- # Collaboration with Ubitus K.K. 💪💪💪
29
 
30
- 本項目與 Ubitus K.K. 合作進行。Ubitus 為本項目提供寶貴的技術支持和計算資源。
31
 
32
- Taiwan LLM v2 is conducted in collaboration with [Ubitus K.K.](http://ubitus.net). Ubitus provides valuable technical support and compute resources for the project.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  Any utilization of the Taiwan LLM repository mandates the explicit acknowledgment and attribution to the original author: checkbox
18
  使用Taiwan LLM必須明確地承認和歸功於優必達株式會社 Ubitus 以及原始作者: checkbox
19
  ---
20
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/CmusIT5OlSXvFrbTJ7l-C.png" alt="Taiwan LLM Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
21
 
22
+ # 🌟 Checkout [Taiwan-LLM Demo Chat-UI](http://www.twllm.com) 🌟
23
 
24
+ # Model Card for Taiwan LLM 7B v2.0 base
25
 
26
+ Taiwan LLM is an advanced language model tailored for Traditional Chinese, focusing on the linguistic and cultural contexts of Taiwan.
27
+ Developed from a large base model, it's enriched with diverse Taiwanese textual sources and refined through Supervised Fine-Tuning.
28
+ This model excels in language understanding and generation, aligning closely with Taiwan's cultural nuances.
29
+ It demonstrates improved performance on various benchmarks like TC-Eval, showcasing its contextual comprehension and cultural relevance.
30
+ For detailed insights into Taiwan LLM's development and features, refer to our [technical report](https://github.com/MiuLab/Taiwan-LLaMa/blob/main/twllm_paper.pdf).
31
 
 
32
 
33
+ ## Model description
34
 
35
+ - **Model type:** A 7B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets.
36
+ - **Language(s) (NLP):** Primarily Traditional Chinese (zh-tw)
37
+ - **Finetuned from model:** [meta-llama/Llama-2-7b-hf](https://huggingface.co/yentinglin/meta-llama/Llama-2-7b-hf)
38
+
39
+ ### Model Sources
40
+
41
+ <!-- Provide the basic links for the model. -->
42
+
43
+ - **Repository:** https://github.com/MiuLab/Taiwan-LLaMa
44
+ - **Demo:** https://twllm.com/
45
+
46
+ ## Performance
47
+
48
+
49
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/HTwIzw6RDha2-PhuWqSuI.png)
50
+
51
+ ## Intended uses
52
+
53
+ You should fine-tuned this model for instruction-following / chat application.
54
+
55
+ ### Training hyperparameters
56
+
57
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/MdvHwdUvH-c926qyRAw7K.png)
58
+
59
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/kKpkvxDzOEyiAoTqmzRYO.png)
60
+
61
+
62
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/FsnlJ_fkRxf7fn5RKZnjE.png)
63
+
64
+ The following hyperparameters were used during training:
65
+ - learning_rate: 5e-05
66
+ - distributed_type: multi-GPU
67
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
68
+ - lr_scheduler_type: cosine
69
+ - lr_scheduler_warmup_ratio: 0.03
70
+ - num_epochs: 5.0
71
+
72
+ ## Citation
73
+
74
+ If you find Taiwan LLM is useful in your work, please cite it with:
75
+
76
+ ```
77
+ @inproceedings{lin-chen-2023-llm,
78
+ title = "{LLM}-Eval: Unified Multi-Dimensional Automatic Evaluation for Open-Domain Conversations with Large Language Models",
79
+ author = "Lin, Yen-Ting and Chen, Yun-Nung",
80
+ booktitle = "Proceedings of the 5th Workshop on NLP for Conversational AI (NLP4ConvAI 2023)",
81
+ month = jul,
82
+ year = "2023",
83
+ address = "Toronto, Canada",
84
+ publisher = "Association for Computational Linguistics",
85
+ url = "https://aclanthology.org/2023.nlp4convai-1.5",
86
+ pages = "47--58"
87
+ }
88
+
89
+ @misc{taiwanllama,
90
+ author={Lin, Yen-Ting and Chen, Yun-Nung},
91
+ title={Language Models for Taiwanese Culture},
92
+ year={2023},
93
+ url={https://github.com/MiuLab/Taiwan-LLaMa},
94
+ note={Code and models available at https://github.com/MiuLab/Taiwan-LLaMa},
95
+ }
96
+ ```
97
+
98
+ # Acknowledgement
99
+
100
+ Taiwan LLM v2 is conducted in collaboration with [Ubitus K.K.](http://ubitus.net). Ubitus provides valuable compute resources for the project.