yentinglin commited on
Commit
6d8b83e
1 Parent(s): 04ebb3e

Upload folder using huggingface_hub

Browse files
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "yentinglin/Llama-3-Taiwan-70B-Instruct-rc3",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 128000,
9
+ "eos_token_id": 128009,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 8192,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 28672,
14
+ "max_position_embeddings": 8192,
15
+ "model_type": "llama",
16
+ "num_attention_heads": 64,
17
+ "num_hidden_layers": 80,
18
+ "num_key_value_heads": 8,
19
+ "pretraining_tp": 1,
20
+ "rms_norm_eps": 1e-05,
21
+ "rope_scaling": null,
22
+ "rope_theta": 500000.0,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.40.2",
26
+ "use_cache": false,
27
+ "vocab_size": 128256
28
+ }
generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 128000,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 128001,
6
+ 128009
7
+ ],
8
+ "max_length": 4096,
9
+ "temperature": 0.6,
10
+ "top_p": 0.9,
11
+ "transformers_version": "4.40.2"
12
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step108
model-00001-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ceca59bf2672782b5d8dd32950298c93f8bbebff65e5114d59f184e8591dadc0
3
+ size 4584408808
model-00002-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65311a1ae88a28f97756374bdfd3ac04819702e41b4e98a4ea3dc1e3f38da895
3
+ size 4664167376
model-00003-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4fbbc92dd73a156be3e55bd4cad4c70c80f085f0a28119a356243ed99a6849a6
3
+ size 4999711704
model-00004-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21c12dbeba70e7520750904f4bdc8a5a5aa8d3ba711fdf05b40387c6a2112503
3
+ size 4966157032
model-00005-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2049aa167f285c85dd9f57eb9dfabbd42939acf785572a549ee419935ed0c3f0
3
+ size 4664134408
model-00006-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd2f73719934583118b06c53e8fe44b5697e9f38e4e07d57d5865a31d957ad3f
3
+ size 4664167408
model-00007-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e626d86fb2893ac35ad28eb105601b1722b721f1c75db5f1516acd76f94d7c6b
3
+ size 4664167408
model-00008-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:827ddd50f669cab713cf36273822fab2ae87db5585c241a62ccdd880d16dc54f
3
+ size 4999711728
model-00009-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:213b007783a739166d2be97c09573719695e98c70232a420a886965caad2d1cb
3
+ size 4966157056
model-00010-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7f661f78dee33ad714f6bd6d19efdd243a49dad2f998def7c54feffde54e6e2
3
+ size 4664134408
model-00011-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72cb2d2ffea069ecdc2ea459edaf835b4a4b03cb6a7478e5dfa9b0a4fda8bbfd
3
+ size 4664167408
model-00012-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ae342da72dabfd5dd05220feb33a03d8c307a492d025970e7ba7158ee20eda2
3
+ size 4664167408
model-00013-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7abe91954470c523fca6880cf6344688f82f6be8456462aea18d14cca5d31d91
3
+ size 4999711728
model-00014-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb51329664948e7104e8061e3ae626c00bde9642d4639b4c1421d7690d06a1da
3
+ size 4966157056
model-00015-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c66ad06b76130524832ece52e77d0b04d36689f4ad54ef3955bf29bddbd32264
3
+ size 4664134408
model-00016-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:535a817159e772d8043eca0b5d4ac4249daf5e1ff263b00a35c5b0f5f80d1729
3
+ size 4664167408
model-00017-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17f4484bce1cdb220889b175eeb3f5461318baffa1a9f611b175e741c08218af
3
+ size 4664167408
model-00018-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16497bd28ed92f99721a6bec89d1ce3048479b9f40744840da04480723b3e7f2
3
+ size 4999711728
model-00019-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4649da440ca0a5ecf2db42bc13e5755e096df75b113bd6353a16885dc00419d4
3
+ size 4966157056
model-00020-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:593b4d531dd16d4e5d8c716d3b4ad7cbbd747163cca44e61e5ca995d5f9e93f9
3
+ size 4664134408
model-00021-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53c245da6fa1e9d64130ec768d57cc8ea82be2a0af2e244a7d8cef590df5a1d7
3
+ size 4664167408
model-00022-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c2b685bfae0ce5cecd5956011cc0266b47c559328e312a0b5a63b052786fc6a
3
+ size 4664167408
model-00023-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8c40cc207fb69f5b7e20ac3dcd62b582bbcbe4cb725d610092c9f1317c7a3de
3
+ size 4999711728
model-00024-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ae3bf132dc1baa14d02efa0710c7abf4ce03ae27d18b4a305103608e7d2c795
3
+ size 4966157056
model-00025-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04226e40c4aadb6943a4b99263ef81b162c553023a272839afb394c561717bbf
3
+ size 4664134408
model-00026-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1ff1f40b6c163f26b8df9eafd78d5350d9c9c5cfcce7bb89f0ef367edb80daa
3
+ size 4664167408
model-00027-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8aff3ca5f4f9353d572d58ae20f9b60faa136ef9780d4195dca65597984905c8
3
+ size 4664167408
model-00028-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3becbdc3e697907b0de01be570f7a9c8643d5dee888af6571413347f99db8a18
3
+ size 4999711728
model-00029-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5a70e32356fb2d34e72dc2227bac53c6a7bb3f9c9fe914ef4749282f05752e7
3
+ size 4966173536
model-00030-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19b1cef6d8979e225b57007f438d89807df98bec7a6623a384ae5ff0c5d05340
3
+ size 2101346432
model.safetensors.index.json ADDED
@@ -0,0 +1,730 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 141107412992
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00030-of-00030.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00030.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00030.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00030.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00030.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00030.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00030.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00030.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00030.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00030.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00030.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00002-of-00030.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00002-of-00030.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00030.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00002-of-00030.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00002-of-00030.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00030.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00030.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00030.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00030.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00005-of-00030.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00005-of-00030.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00005-of-00030.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00005-of-00030.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00005-of-00030.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00005-of-00030.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00005-of-00030.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00005-of-00030.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00005-of-00030.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00005-of-00030.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00005-of-00030.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00005-of-00030.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00005-of-00030.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00005-of-00030.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00005-of-00030.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00005-of-00030.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00005-of-00030.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00005-of-00030.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00006-of-00030.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00006-of-00030.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00005-of-00030.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00005-of-00030.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00006-of-00030.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00005-of-00030.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00005-of-00030.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00005-of-00030.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00005-of-00030.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00006-of-00030.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00006-of-00030.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00006-of-00030.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00006-of-00030.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00006-of-00030.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00006-of-00030.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00006-of-00030.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00006-of-00030.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00006-of-00030.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00006-of-00030.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00006-of-00030.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00006-of-00030.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00006-of-00030.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00006-of-00030.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00006-of-00030.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00006-of-00030.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00006-of-00030.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00006-of-00030.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00007-of-00030.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00007-of-00030.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00006-of-00030.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00007-of-00030.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00007-of-00030.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00006-of-00030.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00006-of-00030.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00006-of-00030.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00006-of-00030.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00007-of-00030.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00007-of-00030.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00007-of-00030.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00007-of-00030.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00007-of-00030.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00007-of-00030.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00007-of-00030.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00007-of-00030.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00007-of-00030.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00007-of-00030.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00007-of-00030.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00007-of-00030.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00007-of-00030.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00007-of-00030.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00007-of-00030.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00007-of-00030.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00007-of-00030.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00007-of-00030.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00008-of-00030.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00008-of-00030.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00008-of-00030.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00008-of-00030.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00008-of-00030.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00007-of-00030.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00007-of-00030.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00007-of-00030.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00007-of-00030.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00008-of-00030.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00008-of-00030.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00008-of-00030.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00008-of-00030.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00008-of-00030.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00008-of-00030.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00008-of-00030.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00008-of-00030.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00008-of-00030.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00002-of-00030.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00002-of-00030.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00002-of-00030.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00002-of-00030.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00002-of-00030.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00002-of-00030.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00002-of-00030.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00002-of-00030.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00002-of-00030.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00008-of-00030.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00008-of-00030.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00008-of-00030.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00008-of-00030.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00008-of-00030.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00008-of-00030.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00008-of-00030.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00008-of-00030.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00008-of-00030.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00009-of-00030.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00009-of-00030.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00009-of-00030.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00009-of-00030.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00009-of-00030.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00008-of-00030.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00009-of-00030.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00008-of-00030.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00008-of-00030.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00009-of-00030.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00009-of-00030.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00009-of-00030.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00009-of-00030.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00009-of-00030.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00009-of-00030.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00009-of-00030.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00009-of-00030.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00009-of-00030.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00009-of-00030.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00009-of-00030.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00009-of-00030.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00009-of-00030.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00009-of-00030.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00009-of-00030.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00009-of-00030.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00009-of-00030.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00009-of-00030.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00010-of-00030.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00010-of-00030.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00010-of-00030.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00010-of-00030.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00010-of-00030.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00010-of-00030.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00010-of-00030.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00010-of-00030.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00010-of-00030.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00010-of-00030.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00010-of-00030.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00010-of-00030.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00010-of-00030.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00010-of-00030.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00010-of-00030.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00010-of-00030.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00010-of-00030.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00010-of-00030.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00011-of-00030.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00011-of-00030.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00010-of-00030.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00010-of-00030.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00011-of-00030.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00010-of-00030.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00010-of-00030.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00010-of-00030.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00010-of-00030.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00011-of-00030.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00011-of-00030.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00011-of-00030.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00011-of-00030.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00011-of-00030.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00011-of-00030.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00011-of-00030.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00011-of-00030.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00011-of-00030.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00011-of-00030.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00011-of-00030.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00011-of-00030.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00011-of-00030.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00011-of-00030.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00011-of-00030.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00011-of-00030.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00011-of-00030.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00011-of-00030.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00012-of-00030.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00012-of-00030.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00011-of-00030.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00012-of-00030.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00012-of-00030.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00011-of-00030.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00011-of-00030.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00011-of-00030.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00011-of-00030.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00002-of-00030.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00002-of-00030.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00002-of-00030.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00002-of-00030.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00002-of-00030.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00002-of-00030.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00002-of-00030.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00002-of-00030.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00002-of-00030.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00012-of-00030.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00012-of-00030.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00012-of-00030.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00012-of-00030.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00012-of-00030.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00012-of-00030.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00012-of-00030.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00012-of-00030.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00012-of-00030.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00012-of-00030.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00012-of-00030.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00012-of-00030.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00012-of-00030.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00012-of-00030.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00012-of-00030.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00012-of-00030.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00012-of-00030.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00012-of-00030.safetensors",
242
+ "model.layers.32.input_layernorm.weight": "model-00013-of-00030.safetensors",
243
+ "model.layers.32.mlp.down_proj.weight": "model-00013-of-00030.safetensors",
244
+ "model.layers.32.mlp.gate_proj.weight": "model-00013-of-00030.safetensors",
245
+ "model.layers.32.mlp.up_proj.weight": "model-00013-of-00030.safetensors",
246
+ "model.layers.32.post_attention_layernorm.weight": "model-00013-of-00030.safetensors",
247
+ "model.layers.32.self_attn.k_proj.weight": "model-00012-of-00030.safetensors",
248
+ "model.layers.32.self_attn.o_proj.weight": "model-00012-of-00030.safetensors",
249
+ "model.layers.32.self_attn.q_proj.weight": "model-00012-of-00030.safetensors",
250
+ "model.layers.32.self_attn.v_proj.weight": "model-00012-of-00030.safetensors",
251
+ "model.layers.33.input_layernorm.weight": "model-00013-of-00030.safetensors",
252
+ "model.layers.33.mlp.down_proj.weight": "model-00013-of-00030.safetensors",
253
+ "model.layers.33.mlp.gate_proj.weight": "model-00013-of-00030.safetensors",
254
+ "model.layers.33.mlp.up_proj.weight": "model-00013-of-00030.safetensors",
255
+ "model.layers.33.post_attention_layernorm.weight": "model-00013-of-00030.safetensors",
256
+ "model.layers.33.self_attn.k_proj.weight": "model-00013-of-00030.safetensors",
257
+ "model.layers.33.self_attn.o_proj.weight": "model-00013-of-00030.safetensors",
258
+ "model.layers.33.self_attn.q_proj.weight": "model-00013-of-00030.safetensors",
259
+ "model.layers.33.self_attn.v_proj.weight": "model-00013-of-00030.safetensors",
260
+ "model.layers.34.input_layernorm.weight": "model-00013-of-00030.safetensors",
261
+ "model.layers.34.mlp.down_proj.weight": "model-00013-of-00030.safetensors",
262
+ "model.layers.34.mlp.gate_proj.weight": "model-00013-of-00030.safetensors",
263
+ "model.layers.34.mlp.up_proj.weight": "model-00013-of-00030.safetensors",
264
+ "model.layers.34.post_attention_layernorm.weight": "model-00013-of-00030.safetensors",
265
+ "model.layers.34.self_attn.k_proj.weight": "model-00013-of-00030.safetensors",
266
+ "model.layers.34.self_attn.o_proj.weight": "model-00013-of-00030.safetensors",
267
+ "model.layers.34.self_attn.q_proj.weight": "model-00013-of-00030.safetensors",
268
+ "model.layers.34.self_attn.v_proj.weight": "model-00013-of-00030.safetensors",
269
+ "model.layers.35.input_layernorm.weight": "model-00014-of-00030.safetensors",
270
+ "model.layers.35.mlp.down_proj.weight": "model-00014-of-00030.safetensors",
271
+ "model.layers.35.mlp.gate_proj.weight": "model-00014-of-00030.safetensors",
272
+ "model.layers.35.mlp.up_proj.weight": "model-00014-of-00030.safetensors",
273
+ "model.layers.35.post_attention_layernorm.weight": "model-00014-of-00030.safetensors",
274
+ "model.layers.35.self_attn.k_proj.weight": "model-00013-of-00030.safetensors",
275
+ "model.layers.35.self_attn.o_proj.weight": "model-00014-of-00030.safetensors",
276
+ "model.layers.35.self_attn.q_proj.weight": "model-00013-of-00030.safetensors",
277
+ "model.layers.35.self_attn.v_proj.weight": "model-00013-of-00030.safetensors",
278
+ "model.layers.36.input_layernorm.weight": "model-00014-of-00030.safetensors",
279
+ "model.layers.36.mlp.down_proj.weight": "model-00014-of-00030.safetensors",
280
+ "model.layers.36.mlp.gate_proj.weight": "model-00014-of-00030.safetensors",
281
+ "model.layers.36.mlp.up_proj.weight": "model-00014-of-00030.safetensors",
282
+ "model.layers.36.post_attention_layernorm.weight": "model-00014-of-00030.safetensors",
283
+ "model.layers.36.self_attn.k_proj.weight": "model-00014-of-00030.safetensors",
284
+ "model.layers.36.self_attn.o_proj.weight": "model-00014-of-00030.safetensors",
285
+ "model.layers.36.self_attn.q_proj.weight": "model-00014-of-00030.safetensors",
286
+ "model.layers.36.self_attn.v_proj.weight": "model-00014-of-00030.safetensors",
287
+ "model.layers.37.input_layernorm.weight": "model-00014-of-00030.safetensors",
288
+ "model.layers.37.mlp.down_proj.weight": "model-00014-of-00030.safetensors",
289
+ "model.layers.37.mlp.gate_proj.weight": "model-00014-of-00030.safetensors",
290
+ "model.layers.37.mlp.up_proj.weight": "model-00014-of-00030.safetensors",
291
+ "model.layers.37.post_attention_layernorm.weight": "model-00014-of-00030.safetensors",
292
+ "model.layers.37.self_attn.k_proj.weight": "model-00014-of-00030.safetensors",
293
+ "model.layers.37.self_attn.o_proj.weight": "model-00014-of-00030.safetensors",
294
+ "model.layers.37.self_attn.q_proj.weight": "model-00014-of-00030.safetensors",
295
+ "model.layers.37.self_attn.v_proj.weight": "model-00014-of-00030.safetensors",
296
+ "model.layers.38.input_layernorm.weight": "model-00015-of-00030.safetensors",
297
+ "model.layers.38.mlp.down_proj.weight": "model-00015-of-00030.safetensors",
298
+ "model.layers.38.mlp.gate_proj.weight": "model-00015-of-00030.safetensors",
299
+ "model.layers.38.mlp.up_proj.weight": "model-00015-of-00030.safetensors",
300
+ "model.layers.38.post_attention_layernorm.weight": "model-00015-of-00030.safetensors",
301
+ "model.layers.38.self_attn.k_proj.weight": "model-00015-of-00030.safetensors",
302
+ "model.layers.38.self_attn.o_proj.weight": "model-00015-of-00030.safetensors",
303
+ "model.layers.38.self_attn.q_proj.weight": "model-00015-of-00030.safetensors",
304
+ "model.layers.38.self_attn.v_proj.weight": "model-00015-of-00030.safetensors",
305
+ "model.layers.39.input_layernorm.weight": "model-00015-of-00030.safetensors",
306
+ "model.layers.39.mlp.down_proj.weight": "model-00015-of-00030.safetensors",
307
+ "model.layers.39.mlp.gate_proj.weight": "model-00015-of-00030.safetensors",
308
+ "model.layers.39.mlp.up_proj.weight": "model-00015-of-00030.safetensors",
309
+ "model.layers.39.post_attention_layernorm.weight": "model-00015-of-00030.safetensors",
310
+ "model.layers.39.self_attn.k_proj.weight": "model-00015-of-00030.safetensors",
311
+ "model.layers.39.self_attn.o_proj.weight": "model-00015-of-00030.safetensors",
312
+ "model.layers.39.self_attn.q_proj.weight": "model-00015-of-00030.safetensors",
313
+ "model.layers.39.self_attn.v_proj.weight": "model-00015-of-00030.safetensors",
314
+ "model.layers.4.input_layernorm.weight": "model-00003-of-00030.safetensors",
315
+ "model.layers.4.mlp.down_proj.weight": "model-00003-of-00030.safetensors",
316
+ "model.layers.4.mlp.gate_proj.weight": "model-00003-of-00030.safetensors",
317
+ "model.layers.4.mlp.up_proj.weight": "model-00003-of-00030.safetensors",
318
+ "model.layers.4.post_attention_layernorm.weight": "model-00003-of-00030.safetensors",
319
+ "model.layers.4.self_attn.k_proj.weight": "model-00002-of-00030.safetensors",
320
+ "model.layers.4.self_attn.o_proj.weight": "model-00002-of-00030.safetensors",
321
+ "model.layers.4.self_attn.q_proj.weight": "model-00002-of-00030.safetensors",
322
+ "model.layers.4.self_attn.v_proj.weight": "model-00002-of-00030.safetensors",
323
+ "model.layers.40.input_layernorm.weight": "model-00016-of-00030.safetensors",
324
+ "model.layers.40.mlp.down_proj.weight": "model-00016-of-00030.safetensors",
325
+ "model.layers.40.mlp.gate_proj.weight": "model-00015-of-00030.safetensors",
326
+ "model.layers.40.mlp.up_proj.weight": "model-00015-of-00030.safetensors",
327
+ "model.layers.40.post_attention_layernorm.weight": "model-00016-of-00030.safetensors",
328
+ "model.layers.40.self_attn.k_proj.weight": "model-00015-of-00030.safetensors",
329
+ "model.layers.40.self_attn.o_proj.weight": "model-00015-of-00030.safetensors",
330
+ "model.layers.40.self_attn.q_proj.weight": "model-00015-of-00030.safetensors",
331
+ "model.layers.40.self_attn.v_proj.weight": "model-00015-of-00030.safetensors",
332
+ "model.layers.41.input_layernorm.weight": "model-00016-of-00030.safetensors",
333
+ "model.layers.41.mlp.down_proj.weight": "model-00016-of-00030.safetensors",
334
+ "model.layers.41.mlp.gate_proj.weight": "model-00016-of-00030.safetensors",
335
+ "model.layers.41.mlp.up_proj.weight": "model-00016-of-00030.safetensors",
336
+ "model.layers.41.post_attention_layernorm.weight": "model-00016-of-00030.safetensors",
337
+ "model.layers.41.self_attn.k_proj.weight": "model-00016-of-00030.safetensors",
338
+ "model.layers.41.self_attn.o_proj.weight": "model-00016-of-00030.safetensors",
339
+ "model.layers.41.self_attn.q_proj.weight": "model-00016-of-00030.safetensors",
340
+ "model.layers.41.self_attn.v_proj.weight": "model-00016-of-00030.safetensors",
341
+ "model.layers.42.input_layernorm.weight": "model-00016-of-00030.safetensors",
342
+ "model.layers.42.mlp.down_proj.weight": "model-00016-of-00030.safetensors",
343
+ "model.layers.42.mlp.gate_proj.weight": "model-00016-of-00030.safetensors",
344
+ "model.layers.42.mlp.up_proj.weight": "model-00016-of-00030.safetensors",
345
+ "model.layers.42.post_attention_layernorm.weight": "model-00016-of-00030.safetensors",
346
+ "model.layers.42.self_attn.k_proj.weight": "model-00016-of-00030.safetensors",
347
+ "model.layers.42.self_attn.o_proj.weight": "model-00016-of-00030.safetensors",
348
+ "model.layers.42.self_attn.q_proj.weight": "model-00016-of-00030.safetensors",
349
+ "model.layers.42.self_attn.v_proj.weight": "model-00016-of-00030.safetensors",
350
+ "model.layers.43.input_layernorm.weight": "model-00017-of-00030.safetensors",
351
+ "model.layers.43.mlp.down_proj.weight": "model-00017-of-00030.safetensors",
352
+ "model.layers.43.mlp.gate_proj.weight": "model-00016-of-00030.safetensors",
353
+ "model.layers.43.mlp.up_proj.weight": "model-00017-of-00030.safetensors",
354
+ "model.layers.43.post_attention_layernorm.weight": "model-00017-of-00030.safetensors",
355
+ "model.layers.43.self_attn.k_proj.weight": "model-00016-of-00030.safetensors",
356
+ "model.layers.43.self_attn.o_proj.weight": "model-00016-of-00030.safetensors",
357
+ "model.layers.43.self_attn.q_proj.weight": "model-00016-of-00030.safetensors",
358
+ "model.layers.43.self_attn.v_proj.weight": "model-00016-of-00030.safetensors",
359
+ "model.layers.44.input_layernorm.weight": "model-00017-of-00030.safetensors",
360
+ "model.layers.44.mlp.down_proj.weight": "model-00017-of-00030.safetensors",
361
+ "model.layers.44.mlp.gate_proj.weight": "model-00017-of-00030.safetensors",
362
+ "model.layers.44.mlp.up_proj.weight": "model-00017-of-00030.safetensors",
363
+ "model.layers.44.post_attention_layernorm.weight": "model-00017-of-00030.safetensors",
364
+ "model.layers.44.self_attn.k_proj.weight": "model-00017-of-00030.safetensors",
365
+ "model.layers.44.self_attn.o_proj.weight": "model-00017-of-00030.safetensors",
366
+ "model.layers.44.self_attn.q_proj.weight": "model-00017-of-00030.safetensors",
367
+ "model.layers.44.self_attn.v_proj.weight": "model-00017-of-00030.safetensors",
368
+ "model.layers.45.input_layernorm.weight": "model-00017-of-00030.safetensors",
369
+ "model.layers.45.mlp.down_proj.weight": "model-00017-of-00030.safetensors",
370
+ "model.layers.45.mlp.gate_proj.weight": "model-00017-of-00030.safetensors",
371
+ "model.layers.45.mlp.up_proj.weight": "model-00017-of-00030.safetensors",
372
+ "model.layers.45.post_attention_layernorm.weight": "model-00017-of-00030.safetensors",
373
+ "model.layers.45.self_attn.k_proj.weight": "model-00017-of-00030.safetensors",
374
+ "model.layers.45.self_attn.o_proj.weight": "model-00017-of-00030.safetensors",
375
+ "model.layers.45.self_attn.q_proj.weight": "model-00017-of-00030.safetensors",
376
+ "model.layers.45.self_attn.v_proj.weight": "model-00017-of-00030.safetensors",
377
+ "model.layers.46.input_layernorm.weight": "model-00018-of-00030.safetensors",
378
+ "model.layers.46.mlp.down_proj.weight": "model-00018-of-00030.safetensors",
379
+ "model.layers.46.mlp.gate_proj.weight": "model-00018-of-00030.safetensors",
380
+ "model.layers.46.mlp.up_proj.weight": "model-00018-of-00030.safetensors",
381
+ "model.layers.46.post_attention_layernorm.weight": "model-00018-of-00030.safetensors",
382
+ "model.layers.46.self_attn.k_proj.weight": "model-00017-of-00030.safetensors",
383
+ "model.layers.46.self_attn.o_proj.weight": "model-00017-of-00030.safetensors",
384
+ "model.layers.46.self_attn.q_proj.weight": "model-00017-of-00030.safetensors",
385
+ "model.layers.46.self_attn.v_proj.weight": "model-00017-of-00030.safetensors",
386
+ "model.layers.47.input_layernorm.weight": "model-00018-of-00030.safetensors",
387
+ "model.layers.47.mlp.down_proj.weight": "model-00018-of-00030.safetensors",
388
+ "model.layers.47.mlp.gate_proj.weight": "model-00018-of-00030.safetensors",
389
+ "model.layers.47.mlp.up_proj.weight": "model-00018-of-00030.safetensors",
390
+ "model.layers.47.post_attention_layernorm.weight": "model-00018-of-00030.safetensors",
391
+ "model.layers.47.self_attn.k_proj.weight": "model-00018-of-00030.safetensors",
392
+ "model.layers.47.self_attn.o_proj.weight": "model-00018-of-00030.safetensors",
393
+ "model.layers.47.self_attn.q_proj.weight": "model-00018-of-00030.safetensors",
394
+ "model.layers.47.self_attn.v_proj.weight": "model-00018-of-00030.safetensors",
395
+ "model.layers.48.input_layernorm.weight": "model-00018-of-00030.safetensors",
396
+ "model.layers.48.mlp.down_proj.weight": "model-00018-of-00030.safetensors",
397
+ "model.layers.48.mlp.gate_proj.weight": "model-00018-of-00030.safetensors",
398
+ "model.layers.48.mlp.up_proj.weight": "model-00018-of-00030.safetensors",
399
+ "model.layers.48.post_attention_layernorm.weight": "model-00018-of-00030.safetensors",
400
+ "model.layers.48.self_attn.k_proj.weight": "model-00018-of-00030.safetensors",
401
+ "model.layers.48.self_attn.o_proj.weight": "model-00018-of-00030.safetensors",
402
+ "model.layers.48.self_attn.q_proj.weight": "model-00018-of-00030.safetensors",
403
+ "model.layers.48.self_attn.v_proj.weight": "model-00018-of-00030.safetensors",
404
+ "model.layers.49.input_layernorm.weight": "model-00019-of-00030.safetensors",
405
+ "model.layers.49.mlp.down_proj.weight": "model-00019-of-00030.safetensors",
406
+ "model.layers.49.mlp.gate_proj.weight": "model-00019-of-00030.safetensors",
407
+ "model.layers.49.mlp.up_proj.weight": "model-00019-of-00030.safetensors",
408
+ "model.layers.49.post_attention_layernorm.weight": "model-00019-of-00030.safetensors",
409
+ "model.layers.49.self_attn.k_proj.weight": "model-00018-of-00030.safetensors",
410
+ "model.layers.49.self_attn.o_proj.weight": "model-00019-of-00030.safetensors",
411
+ "model.layers.49.self_attn.q_proj.weight": "model-00018-of-00030.safetensors",
412
+ "model.layers.49.self_attn.v_proj.weight": "model-00018-of-00030.safetensors",
413
+ "model.layers.5.input_layernorm.weight": "model-00003-of-00030.safetensors",
414
+ "model.layers.5.mlp.down_proj.weight": "model-00003-of-00030.safetensors",
415
+ "model.layers.5.mlp.gate_proj.weight": "model-00003-of-00030.safetensors",
416
+ "model.layers.5.mlp.up_proj.weight": "model-00003-of-00030.safetensors",
417
+ "model.layers.5.post_attention_layernorm.weight": "model-00003-of-00030.safetensors",
418
+ "model.layers.5.self_attn.k_proj.weight": "model-00003-of-00030.safetensors",
419
+ "model.layers.5.self_attn.o_proj.weight": "model-00003-of-00030.safetensors",
420
+ "model.layers.5.self_attn.q_proj.weight": "model-00003-of-00030.safetensors",
421
+ "model.layers.5.self_attn.v_proj.weight": "model-00003-of-00030.safetensors",
422
+ "model.layers.50.input_layernorm.weight": "model-00019-of-00030.safetensors",
423
+ "model.layers.50.mlp.down_proj.weight": "model-00019-of-00030.safetensors",
424
+ "model.layers.50.mlp.gate_proj.weight": "model-00019-of-00030.safetensors",
425
+ "model.layers.50.mlp.up_proj.weight": "model-00019-of-00030.safetensors",
426
+ "model.layers.50.post_attention_layernorm.weight": "model-00019-of-00030.safetensors",
427
+ "model.layers.50.self_attn.k_proj.weight": "model-00019-of-00030.safetensors",
428
+ "model.layers.50.self_attn.o_proj.weight": "model-00019-of-00030.safetensors",
429
+ "model.layers.50.self_attn.q_proj.weight": "model-00019-of-00030.safetensors",
430
+ "model.layers.50.self_attn.v_proj.weight": "model-00019-of-00030.safetensors",
431
+ "model.layers.51.input_layernorm.weight": "model-00019-of-00030.safetensors",
432
+ "model.layers.51.mlp.down_proj.weight": "model-00019-of-00030.safetensors",
433
+ "model.layers.51.mlp.gate_proj.weight": "model-00019-of-00030.safetensors",
434
+ "model.layers.51.mlp.up_proj.weight": "model-00019-of-00030.safetensors",
435
+ "model.layers.51.post_attention_layernorm.weight": "model-00019-of-00030.safetensors",
436
+ "model.layers.51.self_attn.k_proj.weight": "model-00019-of-00030.safetensors",
437
+ "model.layers.51.self_attn.o_proj.weight": "model-00019-of-00030.safetensors",
438
+ "model.layers.51.self_attn.q_proj.weight": "model-00019-of-00030.safetensors",
439
+ "model.layers.51.self_attn.v_proj.weight": "model-00019-of-00030.safetensors",
440
+ "model.layers.52.input_layernorm.weight": "model-00020-of-00030.safetensors",
441
+ "model.layers.52.mlp.down_proj.weight": "model-00020-of-00030.safetensors",
442
+ "model.layers.52.mlp.gate_proj.weight": "model-00020-of-00030.safetensors",
443
+ "model.layers.52.mlp.up_proj.weight": "model-00020-of-00030.safetensors",
444
+ "model.layers.52.post_attention_layernorm.weight": "model-00020-of-00030.safetensors",
445
+ "model.layers.52.self_attn.k_proj.weight": "model-00020-of-00030.safetensors",
446
+ "model.layers.52.self_attn.o_proj.weight": "model-00020-of-00030.safetensors",
447
+ "model.layers.52.self_attn.q_proj.weight": "model-00020-of-00030.safetensors",
448
+ "model.layers.52.self_attn.v_proj.weight": "model-00020-of-00030.safetensors",
449
+ "model.layers.53.input_layernorm.weight": "model-00020-of-00030.safetensors",
450
+ "model.layers.53.mlp.down_proj.weight": "model-00020-of-00030.safetensors",
451
+ "model.layers.53.mlp.gate_proj.weight": "model-00020-of-00030.safetensors",
452
+ "model.layers.53.mlp.up_proj.weight": "model-00020-of-00030.safetensors",
453
+ "model.layers.53.post_attention_layernorm.weight": "model-00020-of-00030.safetensors",
454
+ "model.layers.53.self_attn.k_proj.weight": "model-00020-of-00030.safetensors",
455
+ "model.layers.53.self_attn.o_proj.weight": "model-00020-of-00030.safetensors",
456
+ "model.layers.53.self_attn.q_proj.weight": "model-00020-of-00030.safetensors",
457
+ "model.layers.53.self_attn.v_proj.weight": "model-00020-of-00030.safetensors",
458
+ "model.layers.54.input_layernorm.weight": "model-00021-of-00030.safetensors",
459
+ "model.layers.54.mlp.down_proj.weight": "model-00021-of-00030.safetensors",
460
+ "model.layers.54.mlp.gate_proj.weight": "model-00020-of-00030.safetensors",
461
+ "model.layers.54.mlp.up_proj.weight": "model-00020-of-00030.safetensors",
462
+ "model.layers.54.post_attention_layernorm.weight": "model-00021-of-00030.safetensors",
463
+ "model.layers.54.self_attn.k_proj.weight": "model-00020-of-00030.safetensors",
464
+ "model.layers.54.self_attn.o_proj.weight": "model-00020-of-00030.safetensors",
465
+ "model.layers.54.self_attn.q_proj.weight": "model-00020-of-00030.safetensors",
466
+ "model.layers.54.self_attn.v_proj.weight": "model-00020-of-00030.safetensors",
467
+ "model.layers.55.input_layernorm.weight": "model-00021-of-00030.safetensors",
468
+ "model.layers.55.mlp.down_proj.weight": "model-00021-of-00030.safetensors",
469
+ "model.layers.55.mlp.gate_proj.weight": "model-00021-of-00030.safetensors",
470
+ "model.layers.55.mlp.up_proj.weight": "model-00021-of-00030.safetensors",
471
+ "model.layers.55.post_attention_layernorm.weight": "model-00021-of-00030.safetensors",
472
+ "model.layers.55.self_attn.k_proj.weight": "model-00021-of-00030.safetensors",
473
+ "model.layers.55.self_attn.o_proj.weight": "model-00021-of-00030.safetensors",
474
+ "model.layers.55.self_attn.q_proj.weight": "model-00021-of-00030.safetensors",
475
+ "model.layers.55.self_attn.v_proj.weight": "model-00021-of-00030.safetensors",
476
+ "model.layers.56.input_layernorm.weight": "model-00021-of-00030.safetensors",
477
+ "model.layers.56.mlp.down_proj.weight": "model-00021-of-00030.safetensors",
478
+ "model.layers.56.mlp.gate_proj.weight": "model-00021-of-00030.safetensors",
479
+ "model.layers.56.mlp.up_proj.weight": "model-00021-of-00030.safetensors",
480
+ "model.layers.56.post_attention_layernorm.weight": "model-00021-of-00030.safetensors",
481
+ "model.layers.56.self_attn.k_proj.weight": "model-00021-of-00030.safetensors",
482
+ "model.layers.56.self_attn.o_proj.weight": "model-00021-of-00030.safetensors",
483
+ "model.layers.56.self_attn.q_proj.weight": "model-00021-of-00030.safetensors",
484
+ "model.layers.56.self_attn.v_proj.weight": "model-00021-of-00030.safetensors",
485
+ "model.layers.57.input_layernorm.weight": "model-00022-of-00030.safetensors",
486
+ "model.layers.57.mlp.down_proj.weight": "model-00022-of-00030.safetensors",
487
+ "model.layers.57.mlp.gate_proj.weight": "model-00021-of-00030.safetensors",
488
+ "model.layers.57.mlp.up_proj.weight": "model-00022-of-00030.safetensors",
489
+ "model.layers.57.post_attention_layernorm.weight": "model-00022-of-00030.safetensors",
490
+ "model.layers.57.self_attn.k_proj.weight": "model-00021-of-00030.safetensors",
491
+ "model.layers.57.self_attn.o_proj.weight": "model-00021-of-00030.safetensors",
492
+ "model.layers.57.self_attn.q_proj.weight": "model-00021-of-00030.safetensors",
493
+ "model.layers.57.self_attn.v_proj.weight": "model-00021-of-00030.safetensors",
494
+ "model.layers.58.input_layernorm.weight": "model-00022-of-00030.safetensors",
495
+ "model.layers.58.mlp.down_proj.weight": "model-00022-of-00030.safetensors",
496
+ "model.layers.58.mlp.gate_proj.weight": "model-00022-of-00030.safetensors",
497
+ "model.layers.58.mlp.up_proj.weight": "model-00022-of-00030.safetensors",
498
+ "model.layers.58.post_attention_layernorm.weight": "model-00022-of-00030.safetensors",
499
+ "model.layers.58.self_attn.k_proj.weight": "model-00022-of-00030.safetensors",
500
+ "model.layers.58.self_attn.o_proj.weight": "model-00022-of-00030.safetensors",
501
+ "model.layers.58.self_attn.q_proj.weight": "model-00022-of-00030.safetensors",
502
+ "model.layers.58.self_attn.v_proj.weight": "model-00022-of-00030.safetensors",
503
+ "model.layers.59.input_layernorm.weight": "model-00022-of-00030.safetensors",
504
+ "model.layers.59.mlp.down_proj.weight": "model-00022-of-00030.safetensors",
505
+ "model.layers.59.mlp.gate_proj.weight": "model-00022-of-00030.safetensors",
506
+ "model.layers.59.mlp.up_proj.weight": "model-00022-of-00030.safetensors",
507
+ "model.layers.59.post_attention_layernorm.weight": "model-00022-of-00030.safetensors",
508
+ "model.layers.59.self_attn.k_proj.weight": "model-00022-of-00030.safetensors",
509
+ "model.layers.59.self_attn.o_proj.weight": "model-00022-of-00030.safetensors",
510
+ "model.layers.59.self_attn.q_proj.weight": "model-00022-of-00030.safetensors",
511
+ "model.layers.59.self_attn.v_proj.weight": "model-00022-of-00030.safetensors",
512
+ "model.layers.6.input_layernorm.weight": "model-00003-of-00030.safetensors",
513
+ "model.layers.6.mlp.down_proj.weight": "model-00003-of-00030.safetensors",
514
+ "model.layers.6.mlp.gate_proj.weight": "model-00003-of-00030.safetensors",
515
+ "model.layers.6.mlp.up_proj.weight": "model-00003-of-00030.safetensors",
516
+ "model.layers.6.post_attention_layernorm.weight": "model-00003-of-00030.safetensors",
517
+ "model.layers.6.self_attn.k_proj.weight": "model-00003-of-00030.safetensors",
518
+ "model.layers.6.self_attn.o_proj.weight": "model-00003-of-00030.safetensors",
519
+ "model.layers.6.self_attn.q_proj.weight": "model-00003-of-00030.safetensors",
520
+ "model.layers.6.self_attn.v_proj.weight": "model-00003-of-00030.safetensors",
521
+ "model.layers.60.input_layernorm.weight": "model-00023-of-00030.safetensors",
522
+ "model.layers.60.mlp.down_proj.weight": "model-00023-of-00030.safetensors",
523
+ "model.layers.60.mlp.gate_proj.weight": "model-00023-of-00030.safetensors",
524
+ "model.layers.60.mlp.up_proj.weight": "model-00023-of-00030.safetensors",
525
+ "model.layers.60.post_attention_layernorm.weight": "model-00023-of-00030.safetensors",
526
+ "model.layers.60.self_attn.k_proj.weight": "model-00022-of-00030.safetensors",
527
+ "model.layers.60.self_attn.o_proj.weight": "model-00022-of-00030.safetensors",
528
+ "model.layers.60.self_attn.q_proj.weight": "model-00022-of-00030.safetensors",
529
+ "model.layers.60.self_attn.v_proj.weight": "model-00022-of-00030.safetensors",
530
+ "model.layers.61.input_layernorm.weight": "model-00023-of-00030.safetensors",
531
+ "model.layers.61.mlp.down_proj.weight": "model-00023-of-00030.safetensors",
532
+ "model.layers.61.mlp.gate_proj.weight": "model-00023-of-00030.safetensors",
533
+ "model.layers.61.mlp.up_proj.weight": "model-00023-of-00030.safetensors",
534
+ "model.layers.61.post_attention_layernorm.weight": "model-00023-of-00030.safetensors",
535
+ "model.layers.61.self_attn.k_proj.weight": "model-00023-of-00030.safetensors",
536
+ "model.layers.61.self_attn.o_proj.weight": "model-00023-of-00030.safetensors",
537
+ "model.layers.61.self_attn.q_proj.weight": "model-00023-of-00030.safetensors",
538
+ "model.layers.61.self_attn.v_proj.weight": "model-00023-of-00030.safetensors",
539
+ "model.layers.62.input_layernorm.weight": "model-00023-of-00030.safetensors",
540
+ "model.layers.62.mlp.down_proj.weight": "model-00023-of-00030.safetensors",
541
+ "model.layers.62.mlp.gate_proj.weight": "model-00023-of-00030.safetensors",
542
+ "model.layers.62.mlp.up_proj.weight": "model-00023-of-00030.safetensors",
543
+ "model.layers.62.post_attention_layernorm.weight": "model-00023-of-00030.safetensors",
544
+ "model.layers.62.self_attn.k_proj.weight": "model-00023-of-00030.safetensors",
545
+ "model.layers.62.self_attn.o_proj.weight": "model-00023-of-00030.safetensors",
546
+ "model.layers.62.self_attn.q_proj.weight": "model-00023-of-00030.safetensors",
547
+ "model.layers.62.self_attn.v_proj.weight": "model-00023-of-00030.safetensors",
548
+ "model.layers.63.input_layernorm.weight": "model-00024-of-00030.safetensors",
549
+ "model.layers.63.mlp.down_proj.weight": "model-00024-of-00030.safetensors",
550
+ "model.layers.63.mlp.gate_proj.weight": "model-00024-of-00030.safetensors",
551
+ "model.layers.63.mlp.up_proj.weight": "model-00024-of-00030.safetensors",
552
+ "model.layers.63.post_attention_layernorm.weight": "model-00024-of-00030.safetensors",
553
+ "model.layers.63.self_attn.k_proj.weight": "model-00023-of-00030.safetensors",
554
+ "model.layers.63.self_attn.o_proj.weight": "model-00024-of-00030.safetensors",
555
+ "model.layers.63.self_attn.q_proj.weight": "model-00023-of-00030.safetensors",
556
+ "model.layers.63.self_attn.v_proj.weight": "model-00023-of-00030.safetensors",
557
+ "model.layers.64.input_layernorm.weight": "model-00024-of-00030.safetensors",
558
+ "model.layers.64.mlp.down_proj.weight": "model-00024-of-00030.safetensors",
559
+ "model.layers.64.mlp.gate_proj.weight": "model-00024-of-00030.safetensors",
560
+ "model.layers.64.mlp.up_proj.weight": "model-00024-of-00030.safetensors",
561
+ "model.layers.64.post_attention_layernorm.weight": "model-00024-of-00030.safetensors",
562
+ "model.layers.64.self_attn.k_proj.weight": "model-00024-of-00030.safetensors",
563
+ "model.layers.64.self_attn.o_proj.weight": "model-00024-of-00030.safetensors",
564
+ "model.layers.64.self_attn.q_proj.weight": "model-00024-of-00030.safetensors",
565
+ "model.layers.64.self_attn.v_proj.weight": "model-00024-of-00030.safetensors",
566
+ "model.layers.65.input_layernorm.weight": "model-00024-of-00030.safetensors",
567
+ "model.layers.65.mlp.down_proj.weight": "model-00024-of-00030.safetensors",
568
+ "model.layers.65.mlp.gate_proj.weight": "model-00024-of-00030.safetensors",
569
+ "model.layers.65.mlp.up_proj.weight": "model-00024-of-00030.safetensors",
570
+ "model.layers.65.post_attention_layernorm.weight": "model-00024-of-00030.safetensors",
571
+ "model.layers.65.self_attn.k_proj.weight": "model-00024-of-00030.safetensors",
572
+ "model.layers.65.self_attn.o_proj.weight": "model-00024-of-00030.safetensors",
573
+ "model.layers.65.self_attn.q_proj.weight": "model-00024-of-00030.safetensors",
574
+ "model.layers.65.self_attn.v_proj.weight": "model-00024-of-00030.safetensors",
575
+ "model.layers.66.input_layernorm.weight": "model-00025-of-00030.safetensors",
576
+ "model.layers.66.mlp.down_proj.weight": "model-00025-of-00030.safetensors",
577
+ "model.layers.66.mlp.gate_proj.weight": "model-00025-of-00030.safetensors",
578
+ "model.layers.66.mlp.up_proj.weight": "model-00025-of-00030.safetensors",
579
+ "model.layers.66.post_attention_layernorm.weight": "model-00025-of-00030.safetensors",
580
+ "model.layers.66.self_attn.k_proj.weight": "model-00025-of-00030.safetensors",
581
+ "model.layers.66.self_attn.o_proj.weight": "model-00025-of-00030.safetensors",
582
+ "model.layers.66.self_attn.q_proj.weight": "model-00025-of-00030.safetensors",
583
+ "model.layers.66.self_attn.v_proj.weight": "model-00025-of-00030.safetensors",
584
+ "model.layers.67.input_layernorm.weight": "model-00025-of-00030.safetensors",
585
+ "model.layers.67.mlp.down_proj.weight": "model-00025-of-00030.safetensors",
586
+ "model.layers.67.mlp.gate_proj.weight": "model-00025-of-00030.safetensors",
587
+ "model.layers.67.mlp.up_proj.weight": "model-00025-of-00030.safetensors",
588
+ "model.layers.67.post_attention_layernorm.weight": "model-00025-of-00030.safetensors",
589
+ "model.layers.67.self_attn.k_proj.weight": "model-00025-of-00030.safetensors",
590
+ "model.layers.67.self_attn.o_proj.weight": "model-00025-of-00030.safetensors",
591
+ "model.layers.67.self_attn.q_proj.weight": "model-00025-of-00030.safetensors",
592
+ "model.layers.67.self_attn.v_proj.weight": "model-00025-of-00030.safetensors",
593
+ "model.layers.68.input_layernorm.weight": "model-00026-of-00030.safetensors",
594
+ "model.layers.68.mlp.down_proj.weight": "model-00026-of-00030.safetensors",
595
+ "model.layers.68.mlp.gate_proj.weight": "model-00025-of-00030.safetensors",
596
+ "model.layers.68.mlp.up_proj.weight": "model-00025-of-00030.safetensors",
597
+ "model.layers.68.post_attention_layernorm.weight": "model-00026-of-00030.safetensors",
598
+ "model.layers.68.self_attn.k_proj.weight": "model-00025-of-00030.safetensors",
599
+ "model.layers.68.self_attn.o_proj.weight": "model-00025-of-00030.safetensors",
600
+ "model.layers.68.self_attn.q_proj.weight": "model-00025-of-00030.safetensors",
601
+ "model.layers.68.self_attn.v_proj.weight": "model-00025-of-00030.safetensors",
602
+ "model.layers.69.input_layernorm.weight": "model-00026-of-00030.safetensors",
603
+ "model.layers.69.mlp.down_proj.weight": "model-00026-of-00030.safetensors",
604
+ "model.layers.69.mlp.gate_proj.weight": "model-00026-of-00030.safetensors",
605
+ "model.layers.69.mlp.up_proj.weight": "model-00026-of-00030.safetensors",
606
+ "model.layers.69.post_attention_layernorm.weight": "model-00026-of-00030.safetensors",
607
+ "model.layers.69.self_attn.k_proj.weight": "model-00026-of-00030.safetensors",
608
+ "model.layers.69.self_attn.o_proj.weight": "model-00026-of-00030.safetensors",
609
+ "model.layers.69.self_attn.q_proj.weight": "model-00026-of-00030.safetensors",
610
+ "model.layers.69.self_attn.v_proj.weight": "model-00026-of-00030.safetensors",
611
+ "model.layers.7.input_layernorm.weight": "model-00004-of-00030.safetensors",
612
+ "model.layers.7.mlp.down_proj.weight": "model-00004-of-00030.safetensors",
613
+ "model.layers.7.mlp.gate_proj.weight": "model-00004-of-00030.safetensors",
614
+ "model.layers.7.mlp.up_proj.weight": "model-00004-of-00030.safetensors",
615
+ "model.layers.7.post_attention_layernorm.weight": "model-00004-of-00030.safetensors",
616
+ "model.layers.7.self_attn.k_proj.weight": "model-00003-of-00030.safetensors",
617
+ "model.layers.7.self_attn.o_proj.weight": "model-00004-of-00030.safetensors",
618
+ "model.layers.7.self_attn.q_proj.weight": "model-00003-of-00030.safetensors",
619
+ "model.layers.7.self_attn.v_proj.weight": "model-00003-of-00030.safetensors",
620
+ "model.layers.70.input_layernorm.weight": "model-00026-of-00030.safetensors",
621
+ "model.layers.70.mlp.down_proj.weight": "model-00026-of-00030.safetensors",
622
+ "model.layers.70.mlp.gate_proj.weight": "model-00026-of-00030.safetensors",
623
+ "model.layers.70.mlp.up_proj.weight": "model-00026-of-00030.safetensors",
624
+ "model.layers.70.post_attention_layernorm.weight": "model-00026-of-00030.safetensors",
625
+ "model.layers.70.self_attn.k_proj.weight": "model-00026-of-00030.safetensors",
626
+ "model.layers.70.self_attn.o_proj.weight": "model-00026-of-00030.safetensors",
627
+ "model.layers.70.self_attn.q_proj.weight": "model-00026-of-00030.safetensors",
628
+ "model.layers.70.self_attn.v_proj.weight": "model-00026-of-00030.safetensors",
629
+ "model.layers.71.input_layernorm.weight": "model-00027-of-00030.safetensors",
630
+ "model.layers.71.mlp.down_proj.weight": "model-00027-of-00030.safetensors",
631
+ "model.layers.71.mlp.gate_proj.weight": "model-00026-of-00030.safetensors",
632
+ "model.layers.71.mlp.up_proj.weight": "model-00027-of-00030.safetensors",
633
+ "model.layers.71.post_attention_layernorm.weight": "model-00027-of-00030.safetensors",
634
+ "model.layers.71.self_attn.k_proj.weight": "model-00026-of-00030.safetensors",
635
+ "model.layers.71.self_attn.o_proj.weight": "model-00026-of-00030.safetensors",
636
+ "model.layers.71.self_attn.q_proj.weight": "model-00026-of-00030.safetensors",
637
+ "model.layers.71.self_attn.v_proj.weight": "model-00026-of-00030.safetensors",
638
+ "model.layers.72.input_layernorm.weight": "model-00027-of-00030.safetensors",
639
+ "model.layers.72.mlp.down_proj.weight": "model-00027-of-00030.safetensors",
640
+ "model.layers.72.mlp.gate_proj.weight": "model-00027-of-00030.safetensors",
641
+ "model.layers.72.mlp.up_proj.weight": "model-00027-of-00030.safetensors",
642
+ "model.layers.72.post_attention_layernorm.weight": "model-00027-of-00030.safetensors",
643
+ "model.layers.72.self_attn.k_proj.weight": "model-00027-of-00030.safetensors",
644
+ "model.layers.72.self_attn.o_proj.weight": "model-00027-of-00030.safetensors",
645
+ "model.layers.72.self_attn.q_proj.weight": "model-00027-of-00030.safetensors",
646
+ "model.layers.72.self_attn.v_proj.weight": "model-00027-of-00030.safetensors",
647
+ "model.layers.73.input_layernorm.weight": "model-00027-of-00030.safetensors",
648
+ "model.layers.73.mlp.down_proj.weight": "model-00027-of-00030.safetensors",
649
+ "model.layers.73.mlp.gate_proj.weight": "model-00027-of-00030.safetensors",
650
+ "model.layers.73.mlp.up_proj.weight": "model-00027-of-00030.safetensors",
651
+ "model.layers.73.post_attention_layernorm.weight": "model-00027-of-00030.safetensors",
652
+ "model.layers.73.self_attn.k_proj.weight": "model-00027-of-00030.safetensors",
653
+ "model.layers.73.self_attn.o_proj.weight": "model-00027-of-00030.safetensors",
654
+ "model.layers.73.self_attn.q_proj.weight": "model-00027-of-00030.safetensors",
655
+ "model.layers.73.self_attn.v_proj.weight": "model-00027-of-00030.safetensors",
656
+ "model.layers.74.input_layernorm.weight": "model-00028-of-00030.safetensors",
657
+ "model.layers.74.mlp.down_proj.weight": "model-00028-of-00030.safetensors",
658
+ "model.layers.74.mlp.gate_proj.weight": "model-00028-of-00030.safetensors",
659
+ "model.layers.74.mlp.up_proj.weight": "model-00028-of-00030.safetensors",
660
+ "model.layers.74.post_attention_layernorm.weight": "model-00028-of-00030.safetensors",
661
+ "model.layers.74.self_attn.k_proj.weight": "model-00027-of-00030.safetensors",
662
+ "model.layers.74.self_attn.o_proj.weight": "model-00027-of-00030.safetensors",
663
+ "model.layers.74.self_attn.q_proj.weight": "model-00027-of-00030.safetensors",
664
+ "model.layers.74.self_attn.v_proj.weight": "model-00027-of-00030.safetensors",
665
+ "model.layers.75.input_layernorm.weight": "model-00028-of-00030.safetensors",
666
+ "model.layers.75.mlp.down_proj.weight": "model-00028-of-00030.safetensors",
667
+ "model.layers.75.mlp.gate_proj.weight": "model-00028-of-00030.safetensors",
668
+ "model.layers.75.mlp.up_proj.weight": "model-00028-of-00030.safetensors",
669
+ "model.layers.75.post_attention_layernorm.weight": "model-00028-of-00030.safetensors",
670
+ "model.layers.75.self_attn.k_proj.weight": "model-00028-of-00030.safetensors",
671
+ "model.layers.75.self_attn.o_proj.weight": "model-00028-of-00030.safetensors",
672
+ "model.layers.75.self_attn.q_proj.weight": "model-00028-of-00030.safetensors",
673
+ "model.layers.75.self_attn.v_proj.weight": "model-00028-of-00030.safetensors",
674
+ "model.layers.76.input_layernorm.weight": "model-00028-of-00030.safetensors",
675
+ "model.layers.76.mlp.down_proj.weight": "model-00028-of-00030.safetensors",
676
+ "model.layers.76.mlp.gate_proj.weight": "model-00028-of-00030.safetensors",
677
+ "model.layers.76.mlp.up_proj.weight": "model-00028-of-00030.safetensors",
678
+ "model.layers.76.post_attention_layernorm.weight": "model-00028-of-00030.safetensors",
679
+ "model.layers.76.self_attn.k_proj.weight": "model-00028-of-00030.safetensors",
680
+ "model.layers.76.self_attn.o_proj.weight": "model-00028-of-00030.safetensors",
681
+ "model.layers.76.self_attn.q_proj.weight": "model-00028-of-00030.safetensors",
682
+ "model.layers.76.self_attn.v_proj.weight": "model-00028-of-00030.safetensors",
683
+ "model.layers.77.input_layernorm.weight": "model-00029-of-00030.safetensors",
684
+ "model.layers.77.mlp.down_proj.weight": "model-00029-of-00030.safetensors",
685
+ "model.layers.77.mlp.gate_proj.weight": "model-00029-of-00030.safetensors",
686
+ "model.layers.77.mlp.up_proj.weight": "model-00029-of-00030.safetensors",
687
+ "model.layers.77.post_attention_layernorm.weight": "model-00029-of-00030.safetensors",
688
+ "model.layers.77.self_attn.k_proj.weight": "model-00028-of-00030.safetensors",
689
+ "model.layers.77.self_attn.o_proj.weight": "model-00029-of-00030.safetensors",
690
+ "model.layers.77.self_attn.q_proj.weight": "model-00028-of-00030.safetensors",
691
+ "model.layers.77.self_attn.v_proj.weight": "model-00028-of-00030.safetensors",
692
+ "model.layers.78.input_layernorm.weight": "model-00029-of-00030.safetensors",
693
+ "model.layers.78.mlp.down_proj.weight": "model-00029-of-00030.safetensors",
694
+ "model.layers.78.mlp.gate_proj.weight": "model-00029-of-00030.safetensors",
695
+ "model.layers.78.mlp.up_proj.weight": "model-00029-of-00030.safetensors",
696
+ "model.layers.78.post_attention_layernorm.weight": "model-00029-of-00030.safetensors",
697
+ "model.layers.78.self_attn.k_proj.weight": "model-00029-of-00030.safetensors",
698
+ "model.layers.78.self_attn.o_proj.weight": "model-00029-of-00030.safetensors",
699
+ "model.layers.78.self_attn.q_proj.weight": "model-00029-of-00030.safetensors",
700
+ "model.layers.78.self_attn.v_proj.weight": "model-00029-of-00030.safetensors",
701
+ "model.layers.79.input_layernorm.weight": "model-00029-of-00030.safetensors",
702
+ "model.layers.79.mlp.down_proj.weight": "model-00029-of-00030.safetensors",
703
+ "model.layers.79.mlp.gate_proj.weight": "model-00029-of-00030.safetensors",
704
+ "model.layers.79.mlp.up_proj.weight": "model-00029-of-00030.safetensors",
705
+ "model.layers.79.post_attention_layernorm.weight": "model-00029-of-00030.safetensors",
706
+ "model.layers.79.self_attn.k_proj.weight": "model-00029-of-00030.safetensors",
707
+ "model.layers.79.self_attn.o_proj.weight": "model-00029-of-00030.safetensors",
708
+ "model.layers.79.self_attn.q_proj.weight": "model-00029-of-00030.safetensors",
709
+ "model.layers.79.self_attn.v_proj.weight": "model-00029-of-00030.safetensors",
710
+ "model.layers.8.input_layernorm.weight": "model-00004-of-00030.safetensors",
711
+ "model.layers.8.mlp.down_proj.weight": "model-00004-of-00030.safetensors",
712
+ "model.layers.8.mlp.gate_proj.weight": "model-00004-of-00030.safetensors",
713
+ "model.layers.8.mlp.up_proj.weight": "model-00004-of-00030.safetensors",
714
+ "model.layers.8.post_attention_layernorm.weight": "model-00004-of-00030.safetensors",
715
+ "model.layers.8.self_attn.k_proj.weight": "model-00004-of-00030.safetensors",
716
+ "model.layers.8.self_attn.o_proj.weight": "model-00004-of-00030.safetensors",
717
+ "model.layers.8.self_attn.q_proj.weight": "model-00004-of-00030.safetensors",
718
+ "model.layers.8.self_attn.v_proj.weight": "model-00004-of-00030.safetensors",
719
+ "model.layers.9.input_layernorm.weight": "model-00004-of-00030.safetensors",
720
+ "model.layers.9.mlp.down_proj.weight": "model-00004-of-00030.safetensors",
721
+ "model.layers.9.mlp.gate_proj.weight": "model-00004-of-00030.safetensors",
722
+ "model.layers.9.mlp.up_proj.weight": "model-00004-of-00030.safetensors",
723
+ "model.layers.9.post_attention_layernorm.weight": "model-00004-of-00030.safetensors",
724
+ "model.layers.9.self_attn.k_proj.weight": "model-00004-of-00030.safetensors",
725
+ "model.layers.9.self_attn.o_proj.weight": "model-00004-of-00030.safetensors",
726
+ "model.layers.9.self_attn.q_proj.weight": "model-00004-of-00030.safetensors",
727
+ "model.layers.9.self_attn.v_proj.weight": "model-00004-of-00030.safetensors",
728
+ "model.norm.weight": "model-00029-of-00030.safetensors"
729
+ }
730
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|eot_id|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|end_of_text|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,2063 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|reserved_special_token_2|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_3|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|reserved_special_token_4|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|reserved_special_token_5|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_6|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_7|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_8|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_9|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_10|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_11|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_12|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_13|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_14|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_15|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_16|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_17|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_18|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_19|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_20|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_21|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_22|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_23|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_24|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_25|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_26|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_27|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_28|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_29|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_30|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_31|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_32|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_33|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_34|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_35|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_36|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_37|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_38|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_39|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_40|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_41|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_42|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_43|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_44|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_45|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_46|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_47|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_48|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_49|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_50|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_51|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_52|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_53|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_54|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_55|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_56|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_57|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_58|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_59|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_60|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_61|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_62|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_63|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_64|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_65|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_66|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_67|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_68|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_69|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_70|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_71|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_72|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_73|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_74|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_75|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_76|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_77|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_78|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_79|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_80|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_81|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_82|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_83|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_84|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_85|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_86|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_87|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_88|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_89|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_90|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_91|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_92|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_93|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_94|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_95|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_96|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_97|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_98|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_99|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_100|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_101|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_102|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_103|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_104|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_105|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_106|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_107|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_108|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_109|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_110|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_111|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_112|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_113|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_114|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_115|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_116|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_117|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_118|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_119|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_120|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_121|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_122|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_123|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_124|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_125|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_126|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_127|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_128|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_129|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_130|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_131|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_132|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_133|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_134|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_135|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_136|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_137|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_138|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_139|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_140|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_141|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_142|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_143|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_144|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_145|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_146|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_147|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_148|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_149|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_150|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_151|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_152|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_153|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_154|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_155|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_156|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_157|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_158|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_159|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_160|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_161|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_162|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_163|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_164|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_165|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_166|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_167|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_168|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_169|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_170|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_171|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_172|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_173|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_174|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_175|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_176|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_177|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_178|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_179|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_180|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_181|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_182|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_183|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_184|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_185|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_186|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_187|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_188|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_189|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_190|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_191|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_192|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_193|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_194|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_195|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_196|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_197|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_198|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_199|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_200|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_201|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_202|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_203|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_204|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_205|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_206|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_207|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_208|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_209|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_210|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_211|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_212|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_213|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_214|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_215|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_216|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_217|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_218|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_219|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_220|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_221|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_222|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_223|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_224|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_225|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_226|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_227|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_228|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_229|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_230|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_231|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_232|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_233|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_234|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_235|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_236|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_237|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_238|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_239|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_240|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_241|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_242|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_243|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_244|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_245|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_246|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_247|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_248|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_249|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_250|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ }
2051
+ },
2052
+ "bos_token": "<|begin_of_text|>",
2053
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% else %}{{ eos_token }}{% endif %}",
2054
+ "clean_up_tokenization_spaces": true,
2055
+ "eos_token": "<|eot_id|>",
2056
+ "model_input_names": [
2057
+ "input_ids",
2058
+ "attention_mask"
2059
+ ],
2060
+ "model_max_length": 1000000000000000019884624838656,
2061
+ "pad_token": "<|end_of_text|>",
2062
+ "tokenizer_class": "PreTrainedTokenizerFast"
2063
+ }
trainer_state.json ADDED
@@ -0,0 +1,777 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.967741935483871,
5
+ "eval_steps": 500,
6
+ "global_step": 108,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.018433179723502304,
13
+ "grad_norm": 0.16578913731865466,
14
+ "learning_rate": 5.000000000000001e-07,
15
+ "loss": 0.5087,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.03686635944700461,
20
+ "grad_norm": 0.1722925976557175,
21
+ "learning_rate": 1.0000000000000002e-06,
22
+ "loss": 0.4998,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.055299539170506916,
27
+ "grad_norm": 0.162572172422981,
28
+ "learning_rate": 1.5e-06,
29
+ "loss": 0.5098,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.07373271889400922,
34
+ "grad_norm": 0.15599834075161614,
35
+ "learning_rate": 2.0000000000000003e-06,
36
+ "loss": 0.5042,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.09216589861751152,
41
+ "grad_norm": 0.12177646639247991,
42
+ "learning_rate": 2.5e-06,
43
+ "loss": 0.5071,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.11059907834101383,
48
+ "grad_norm": 0.1237088515175474,
49
+ "learning_rate": 3e-06,
50
+ "loss": 0.5017,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.12903225806451613,
55
+ "grad_norm": 0.16630602309614123,
56
+ "learning_rate": 3.5000000000000004e-06,
57
+ "loss": 0.5048,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.14746543778801843,
62
+ "grad_norm": 0.27010444722015153,
63
+ "learning_rate": 4.000000000000001e-06,
64
+ "loss": 0.5101,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.16589861751152074,
69
+ "grad_norm": 0.29479730440390195,
70
+ "learning_rate": 4.5e-06,
71
+ "loss": 0.5076,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.18433179723502305,
76
+ "grad_norm": 0.1759601385954911,
77
+ "learning_rate": 5e-06,
78
+ "loss": 0.5081,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.20276497695852536,
83
+ "grad_norm": 0.16293907501833735,
84
+ "learning_rate": 5.500000000000001e-06,
85
+ "loss": 0.5058,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.22119815668202766,
90
+ "grad_norm": 0.2104524729834747,
91
+ "learning_rate": 6e-06,
92
+ "loss": 0.5041,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.23963133640552994,
97
+ "grad_norm": 0.3439111046909263,
98
+ "learning_rate": 6.5000000000000004e-06,
99
+ "loss": 0.5028,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.25806451612903225,
104
+ "grad_norm": 0.1896879332677983,
105
+ "learning_rate": 7.000000000000001e-06,
106
+ "loss": 0.5063,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.2764976958525346,
111
+ "grad_norm": 0.16556412873045434,
112
+ "learning_rate": 7.5e-06,
113
+ "loss": 0.5008,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.29493087557603687,
118
+ "grad_norm": 0.18454200495588122,
119
+ "learning_rate": 8.000000000000001e-06,
120
+ "loss": 0.5025,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.31336405529953915,
125
+ "grad_norm": 0.19016194104381942,
126
+ "learning_rate": 8.500000000000002e-06,
127
+ "loss": 0.506,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.3317972350230415,
132
+ "grad_norm": 0.1756522900201089,
133
+ "learning_rate": 9e-06,
134
+ "loss": 0.5065,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.35023041474654376,
139
+ "grad_norm": 0.20347747202770788,
140
+ "learning_rate": 9.5e-06,
141
+ "loss": 0.5018,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.3686635944700461,
146
+ "grad_norm": 0.17281128792073364,
147
+ "learning_rate": 1e-05,
148
+ "loss": 0.4985,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.3870967741935484,
153
+ "grad_norm": 0.16864344707112827,
154
+ "learning_rate": 1.05e-05,
155
+ "loss": 0.5001,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.4055299539170507,
160
+ "grad_norm": 0.180006594373567,
161
+ "learning_rate": 1.1000000000000001e-05,
162
+ "loss": 0.4957,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.423963133640553,
167
+ "grad_norm": 0.22019846104588628,
168
+ "learning_rate": 1.1500000000000002e-05,
169
+ "loss": 0.4994,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.4423963133640553,
174
+ "grad_norm": 0.29450471197920014,
175
+ "learning_rate": 1.2e-05,
176
+ "loss": 0.4975,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.4608294930875576,
181
+ "grad_norm": 0.3531458750461238,
182
+ "learning_rate": 1.25e-05,
183
+ "loss": 0.5024,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.4792626728110599,
188
+ "grad_norm": 0.2704221537114728,
189
+ "learning_rate": 1.3000000000000001e-05,
190
+ "loss": 0.5036,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.4976958525345622,
195
+ "grad_norm": 0.21807981567443038,
196
+ "learning_rate": 1.3500000000000001e-05,
197
+ "loss": 0.4963,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.5161290322580645,
202
+ "grad_norm": 0.2537511686453976,
203
+ "learning_rate": 1.4000000000000001e-05,
204
+ "loss": 0.5014,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.5345622119815668,
209
+ "grad_norm": 0.27282609851480566,
210
+ "learning_rate": 1.45e-05,
211
+ "loss": 0.4952,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.5529953917050692,
216
+ "grad_norm": 0.1811493216272178,
217
+ "learning_rate": 1.5e-05,
218
+ "loss": 0.4945,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.5714285714285714,
223
+ "grad_norm": 0.2154826922529899,
224
+ "learning_rate": 1.55e-05,
225
+ "loss": 0.4927,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.5898617511520737,
230
+ "grad_norm": 0.27147274813275624,
231
+ "learning_rate": 1.6000000000000003e-05,
232
+ "loss": 0.4955,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.6082949308755761,
237
+ "grad_norm": 0.3148285453024877,
238
+ "learning_rate": 1.65e-05,
239
+ "loss": 0.4944,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.6267281105990783,
244
+ "grad_norm": 0.34859491123867103,
245
+ "learning_rate": 1.7000000000000003e-05,
246
+ "loss": 0.4905,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.6451612903225806,
251
+ "grad_norm": 0.42577058166978227,
252
+ "learning_rate": 1.75e-05,
253
+ "loss": 0.4913,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.663594470046083,
258
+ "grad_norm": 0.4904668611850979,
259
+ "learning_rate": 1.8e-05,
260
+ "loss": 0.496,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.6820276497695853,
265
+ "grad_norm": 0.45085408352277095,
266
+ "learning_rate": 1.85e-05,
267
+ "loss": 0.497,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.7004608294930875,
272
+ "grad_norm": 0.3728335955961086,
273
+ "learning_rate": 1.9e-05,
274
+ "loss": 0.4924,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.7188940092165899,
279
+ "grad_norm": 0.31712845935435935,
280
+ "learning_rate": 1.9500000000000003e-05,
281
+ "loss": 0.4971,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.7373271889400922,
286
+ "grad_norm": 0.35626608232389995,
287
+ "learning_rate": 2e-05,
288
+ "loss": 0.4937,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.7557603686635944,
293
+ "grad_norm": 0.36587367082049105,
294
+ "learning_rate": 2.05e-05,
295
+ "loss": 0.4879,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.7741935483870968,
300
+ "grad_norm": 0.34644598131926585,
301
+ "learning_rate": 2.1e-05,
302
+ "loss": 0.4978,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.7926267281105991,
307
+ "grad_norm": 0.3590839478187489,
308
+ "learning_rate": 2.15e-05,
309
+ "loss": 0.4933,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.8110599078341014,
314
+ "grad_norm": 0.4208361801021048,
315
+ "learning_rate": 2.2000000000000003e-05,
316
+ "loss": 0.4945,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.8294930875576036,
321
+ "grad_norm": 0.4476283919996847,
322
+ "learning_rate": 2.25e-05,
323
+ "loss": 0.4892,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.847926267281106,
328
+ "grad_norm": 0.36958185599300014,
329
+ "learning_rate": 2.3000000000000003e-05,
330
+ "loss": 0.4949,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.8663594470046083,
335
+ "grad_norm": 0.2911820871345684,
336
+ "learning_rate": 2.35e-05,
337
+ "loss": 0.4909,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.8847926267281107,
342
+ "grad_norm": 0.30858968380534924,
343
+ "learning_rate": 2.4e-05,
344
+ "loss": 0.4885,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.9032258064516129,
349
+ "grad_norm": 0.29278185745501223,
350
+ "learning_rate": 2.45e-05,
351
+ "loss": 0.4924,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.9216589861751152,
356
+ "grad_norm": 0.2544353522559892,
357
+ "learning_rate": 2.5e-05,
358
+ "loss": 0.4875,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.9400921658986175,
363
+ "grad_norm": 0.2715960030565017,
364
+ "learning_rate": 2.5500000000000003e-05,
365
+ "loss": 0.4868,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.9585253456221198,
370
+ "grad_norm": 0.3073179286108365,
371
+ "learning_rate": 2.6000000000000002e-05,
372
+ "loss": 0.4889,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.9769585253456221,
377
+ "grad_norm": 0.3371193687132362,
378
+ "learning_rate": 2.6500000000000004e-05,
379
+ "loss": 0.4898,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.9953917050691244,
384
+ "grad_norm": 0.33074577044400744,
385
+ "learning_rate": 2.7000000000000002e-05,
386
+ "loss": 0.4841,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 1.0138248847926268,
391
+ "grad_norm": 0.3297515468133034,
392
+ "learning_rate": 2.7500000000000004e-05,
393
+ "loss": 0.4884,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 1.0092165898617511,
398
+ "grad_norm": 0.4029640463193266,
399
+ "learning_rate": 2.8000000000000003e-05,
400
+ "loss": 0.459,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 1.0276497695852536,
405
+ "grad_norm": 0.4940605439662155,
406
+ "learning_rate": 2.8499999999999998e-05,
407
+ "loss": 0.4237,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 1.0460829493087558,
412
+ "grad_norm": 0.6088906714727877,
413
+ "learning_rate": 2.9e-05,
414
+ "loss": 0.431,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 1.064516129032258,
419
+ "grad_norm": 0.7906992222694273,
420
+ "learning_rate": 2.95e-05,
421
+ "loss": 0.4386,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 1.0829493087557605,
426
+ "grad_norm": 0.8776764408330847,
427
+ "learning_rate": 3e-05,
428
+ "loss": 0.4377,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 1.1013824884792627,
433
+ "grad_norm": 0.8163334281126426,
434
+ "learning_rate": 3.05e-05,
435
+ "loss": 0.4356,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 1.119815668202765,
440
+ "grad_norm": 0.8591188461532855,
441
+ "learning_rate": 3.1e-05,
442
+ "loss": 0.4343,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 1.1382488479262673,
447
+ "grad_norm": 0.7423520884399006,
448
+ "learning_rate": 3.15e-05,
449
+ "loss": 0.4396,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 1.1566820276497696,
454
+ "grad_norm": 0.6559077625993845,
455
+ "learning_rate": 3.2000000000000005e-05,
456
+ "loss": 0.4393,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 1.1751152073732718,
461
+ "grad_norm": 0.5192220132180586,
462
+ "learning_rate": 3.2500000000000004e-05,
463
+ "loss": 0.4268,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 1.1935483870967742,
468
+ "grad_norm": 0.4721316464238954,
469
+ "learning_rate": 3.3e-05,
470
+ "loss": 0.4299,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 1.2119815668202765,
475
+ "grad_norm": 0.37162261772983884,
476
+ "learning_rate": 3.35e-05,
477
+ "loss": 0.428,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 1.230414746543779,
482
+ "grad_norm": 0.390597086956948,
483
+ "learning_rate": 3.4000000000000007e-05,
484
+ "loss": 0.4242,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 1.2488479262672811,
489
+ "grad_norm": 0.3667364763504883,
490
+ "learning_rate": 3.45e-05,
491
+ "loss": 0.4308,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 1.2672811059907834,
496
+ "grad_norm": 0.4413076637014959,
497
+ "learning_rate": 3.5e-05,
498
+ "loss": 0.4175,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 1.2857142857142856,
503
+ "grad_norm": 0.3828593150648835,
504
+ "learning_rate": 3.55e-05,
505
+ "loss": 0.4255,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 1.304147465437788,
510
+ "grad_norm": 0.3422241428662135,
511
+ "learning_rate": 3.6e-05,
512
+ "loss": 0.4206,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 1.3225806451612903,
517
+ "grad_norm": 0.419503312255047,
518
+ "learning_rate": 3.65e-05,
519
+ "loss": 0.4216,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 1.3410138248847927,
524
+ "grad_norm": 0.39398530533795917,
525
+ "learning_rate": 3.7e-05,
526
+ "loss": 0.4186,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 1.359447004608295,
531
+ "grad_norm": 0.31275590078306537,
532
+ "learning_rate": 3.7500000000000003e-05,
533
+ "loss": 0.4192,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 1.3778801843317972,
538
+ "grad_norm": 0.283726761659876,
539
+ "learning_rate": 3.8e-05,
540
+ "loss": 0.4134,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 1.3963133640552996,
545
+ "grad_norm": 0.2795686696921213,
546
+ "learning_rate": 3.85e-05,
547
+ "loss": 0.4201,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 1.4147465437788018,
552
+ "grad_norm": 0.2573708572632348,
553
+ "learning_rate": 3.9000000000000006e-05,
554
+ "loss": 0.4174,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 1.4331797235023043,
559
+ "grad_norm": 0.26179179902269994,
560
+ "learning_rate": 3.9500000000000005e-05,
561
+ "loss": 0.4186,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 1.4516129032258065,
566
+ "grad_norm": 0.25383918207396766,
567
+ "learning_rate": 4e-05,
568
+ "loss": 0.4115,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 1.4700460829493087,
573
+ "grad_norm": 0.26752441715146946,
574
+ "learning_rate": 4.05e-05,
575
+ "loss": 0.4164,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 1.488479262672811,
580
+ "grad_norm": 0.3298159183943398,
581
+ "learning_rate": 4.1e-05,
582
+ "loss": 0.4199,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 1.5069124423963134,
587
+ "grad_norm": 0.38660808750412323,
588
+ "learning_rate": 4.15e-05,
589
+ "loss": 0.417,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 1.5253456221198156,
594
+ "grad_norm": 0.485211204279941,
595
+ "learning_rate": 4.2e-05,
596
+ "loss": 0.4193,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 1.543778801843318,
601
+ "grad_norm": 0.6255151017178746,
602
+ "learning_rate": 4.25e-05,
603
+ "loss": 0.4264,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 1.5622119815668203,
608
+ "grad_norm": 0.7700118743780004,
609
+ "learning_rate": 4.3e-05,
610
+ "loss": 0.4287,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 1.5806451612903225,
615
+ "grad_norm": 0.6615400048001224,
616
+ "learning_rate": 4.35e-05,
617
+ "loss": 0.4277,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 1.5990783410138247,
622
+ "grad_norm": 0.4437937981053966,
623
+ "learning_rate": 4.4000000000000006e-05,
624
+ "loss": 0.4232,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 1.6175115207373272,
629
+ "grad_norm": 0.567061608533075,
630
+ "learning_rate": 4.4500000000000004e-05,
631
+ "loss": 0.4258,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 1.6359447004608296,
636
+ "grad_norm": 0.4918052804723442,
637
+ "learning_rate": 4.5e-05,
638
+ "loss": 0.4228,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 1.6543778801843319,
643
+ "grad_norm": 0.496826066236439,
644
+ "learning_rate": 4.55e-05,
645
+ "loss": 0.4229,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 1.672811059907834,
650
+ "grad_norm": 0.4731592011924632,
651
+ "learning_rate": 4.600000000000001e-05,
652
+ "loss": 0.4215,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 1.6912442396313363,
657
+ "grad_norm": 0.36878471669976337,
658
+ "learning_rate": 4.6500000000000005e-05,
659
+ "loss": 0.4193,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 1.7096774193548387,
664
+ "grad_norm": 0.42898764923079724,
665
+ "learning_rate": 4.7e-05,
666
+ "loss": 0.416,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 1.728110599078341,
671
+ "grad_norm": 0.3959738727253371,
672
+ "learning_rate": 4.75e-05,
673
+ "loss": 0.4186,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 1.7465437788018434,
678
+ "grad_norm": 0.3284621544244543,
679
+ "learning_rate": 4.8e-05,
680
+ "loss": 0.4159,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 1.7649769585253456,
685
+ "grad_norm": 0.3687303178188624,
686
+ "learning_rate": 4.85e-05,
687
+ "loss": 0.4177,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 1.7834101382488479,
692
+ "grad_norm": 0.36139089440724775,
693
+ "learning_rate": 4.9e-05,
694
+ "loss": 0.4198,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 1.80184331797235,
699
+ "grad_norm": 0.4663478454832621,
700
+ "learning_rate": 4.9500000000000004e-05,
701
+ "loss": 0.4264,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 1.8202764976958525,
706
+ "grad_norm": 0.5056372967287713,
707
+ "learning_rate": 5e-05,
708
+ "loss": 0.4217,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 1.838709677419355,
713
+ "grad_norm": 0.5324522359135441,
714
+ "learning_rate": 4.8096988312782174e-05,
715
+ "loss": 0.4216,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 1.8571428571428572,
720
+ "grad_norm": 0.4621746495598758,
721
+ "learning_rate": 4.267766952966369e-05,
722
+ "loss": 0.4225,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 1.8755760368663594,
727
+ "grad_norm": 0.3415822814753156,
728
+ "learning_rate": 3.456708580912725e-05,
729
+ "loss": 0.4187,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 1.8940092165898617,
734
+ "grad_norm": 0.30176145892972905,
735
+ "learning_rate": 2.5e-05,
736
+ "loss": 0.4175,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 1.912442396313364,
741
+ "grad_norm": 0.2511920801182371,
742
+ "learning_rate": 1.5432914190872757e-05,
743
+ "loss": 0.4164,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 1.9308755760368663,
748
+ "grad_norm": 0.21487586752475282,
749
+ "learning_rate": 7.3223304703363135e-06,
750
+ "loss": 0.4144,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 1.9493087557603688,
755
+ "grad_norm": 0.1707899105775025,
756
+ "learning_rate": 1.9030116872178316e-06,
757
+ "loss": 0.4152,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 1.967741935483871,
762
+ "grad_norm": 0.16592415069318403,
763
+ "learning_rate": 0.0,
764
+ "loss": 0.4088,
765
+ "step": 108
766
+ }
767
+ ],
768
+ "logging_steps": 1,
769
+ "max_steps": 108,
770
+ "num_input_tokens_seen": 0,
771
+ "num_train_epochs": 2,
772
+ "save_steps": 6,
773
+ "total_flos": 1.1787401428992e+16,
774
+ "train_batch_size": 2,
775
+ "trial_name": null,
776
+ "trial_params": null
777
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26df6ec4c68a17f6ac05cc46a14d93392b1e6fed65070c5b7558a916e639ca33
3
+ size 7800
zero_to_fp32.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _has_callable(obj, fn):
252
+ attr = getattr(obj, fn, None)
253
+ return callable(attr)
254
+
255
+
256
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
257
+ param_shapes = zero_model_states[0].param_shapes
258
+
259
+ # Reconstruction protocol:
260
+ #
261
+ # XXX: document this
262
+
263
+ if debug:
264
+ for i in range(world_size):
265
+ for j in range(len(fp32_flat_groups[0])):
266
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
267
+
268
+ # XXX: memory usage doubles here (zero2)
269
+ num_param_groups = len(fp32_flat_groups[0])
270
+ merged_single_partition_of_fp32_groups = []
271
+ for i in range(num_param_groups):
272
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
273
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
274
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
275
+ avail_numel = sum(
276
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
277
+
278
+ if debug:
279
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
280
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
281
+ # not asserting if there is a mismatch due to possible padding
282
+ print(f"Have {avail_numel} numels to process.")
283
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
284
+
285
+ # params
286
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
287
+ # out-of-core computing solution
288
+ total_numel = 0
289
+ total_params = 0
290
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
291
+ offset = 0
292
+ avail_numel = full_single_fp32_vector.numel()
293
+ for name, shape in shapes.items():
294
+
295
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
296
+ total_numel += unpartitioned_numel
297
+ total_params += 1
298
+
299
+ if debug:
300
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
301
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
302
+ offset += unpartitioned_numel
303
+
304
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
305
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
306
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
307
+ # live optimizer object, so we are checking that the numbers are within the right range
308
+ align_to = 2 * world_size
309
+
310
+ def zero2_align(x):
311
+ return align_to * math.ceil(x / align_to)
312
+
313
+ if debug:
314
+ print(f"original offset={offset}, avail_numel={avail_numel}")
315
+
316
+ offset = zero2_align(offset)
317
+ avail_numel = zero2_align(avail_numel)
318
+
319
+ if debug:
320
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
321
+
322
+ # Sanity check
323
+ if offset != avail_numel:
324
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
325
+
326
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
327
+
328
+
329
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
330
+ state_dict = OrderedDict()
331
+
332
+ # buffers
333
+ buffers = zero_model_states[0].buffers
334
+ state_dict.update(buffers)
335
+ if debug:
336
+ print(f"added {len(buffers)} buffers")
337
+
338
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
339
+
340
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
341
+
342
+ # recover shared parameters
343
+ for pair in zero_model_states[0].shared_params:
344
+ if pair[1] in state_dict:
345
+ state_dict[pair[0]] = state_dict[pair[1]]
346
+
347
+ return state_dict
348
+
349
+
350
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
351
+ remainder = unpartitioned_numel % world_size
352
+ padding_numel = (world_size - remainder) if remainder else 0
353
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
354
+ return partitioned_numel, padding_numel
355
+
356
+
357
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
358
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
359
+ return
360
+
361
+ if debug:
362
+ for i in range(world_size):
363
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
364
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
365
+
366
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
367
+ wanted_params = len(frozen_param_shapes)
368
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
369
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
370
+ print(f'Frozen params: Have {avail_numel} numels to process.')
371
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
372
+
373
+ total_params = 0
374
+ total_numel = 0
375
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
376
+ total_params += 1
377
+ unpartitioned_numel = shape.numel()
378
+ total_numel += unpartitioned_numel
379
+
380
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
381
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
382
+
383
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
384
+
385
+ if debug:
386
+ print(
387
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
388
+ )
389
+
390
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
391
+
392
+
393
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
394
+ param_shapes = zero_model_states[0].param_shapes
395
+ avail_numel = fp32_flat_groups[0].numel() * world_size
396
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
397
+ # param, re-consolidating each param, while dealing with padding if any
398
+
399
+ # merge list of dicts, preserving order
400
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
401
+
402
+ if debug:
403
+ for i in range(world_size):
404
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
405
+
406
+ wanted_params = len(param_shapes)
407
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
408
+ # not asserting if there is a mismatch due to possible padding
409
+ avail_numel = fp32_flat_groups[0].numel() * world_size
410
+ print(f"Trainable params: Have {avail_numel} numels to process.")
411
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
412
+
413
+ # params
414
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
415
+ # out-of-core computing solution
416
+ offset = 0
417
+ total_numel = 0
418
+ total_params = 0
419
+ for name, shape in param_shapes.items():
420
+
421
+ unpartitioned_numel = shape.numel()
422
+ total_numel += unpartitioned_numel
423
+ total_params += 1
424
+
425
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
426
+
427
+ if debug:
428
+ print(
429
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
430
+ )
431
+
432
+ # XXX: memory usage doubles here
433
+ state_dict[name] = torch.cat(
434
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
435
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
436
+ offset += partitioned_numel
437
+
438
+ offset *= world_size
439
+
440
+ # Sanity check
441
+ if offset != avail_numel:
442
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
443
+
444
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
445
+
446
+
447
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
448
+ state_dict = OrderedDict()
449
+
450
+ # buffers
451
+ buffers = zero_model_states[0].buffers
452
+ state_dict.update(buffers)
453
+ if debug:
454
+ print(f"added {len(buffers)} buffers")
455
+
456
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
457
+
458
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
459
+
460
+ # recover shared parameters
461
+ for pair in zero_model_states[0].shared_params:
462
+ if pair[1] in state_dict:
463
+ state_dict[pair[0]] = state_dict[pair[1]]
464
+
465
+ return state_dict
466
+
467
+
468
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
469
+ """
470
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
471
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
472
+ via a model hub.
473
+
474
+ Args:
475
+ - ``checkpoint_dir``: path to the desired checkpoint folder
476
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
477
+
478
+ Returns:
479
+ - pytorch ``state_dict``
480
+
481
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
482
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
483
+ the checkpoint.
484
+
485
+ A typical usage might be ::
486
+
487
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
488
+ # do the training and checkpoint saving
489
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
490
+ model = model.cpu() # move to cpu
491
+ model.load_state_dict(state_dict)
492
+ # submit to model hub or save the model to share with others
493
+
494
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
495
+ application. i.e. you will need to re-initialize the deepspeed engine, since
496
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
497
+
498
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
499
+
500
+ """
501
+ if tag is None:
502
+ latest_path = os.path.join(checkpoint_dir, 'latest')
503
+ if os.path.isfile(latest_path):
504
+ with open(latest_path, 'r') as fd:
505
+ tag = fd.read().strip()
506
+ else:
507
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
508
+
509
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
510
+
511
+ if not os.path.isdir(ds_checkpoint_dir):
512
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
513
+
514
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
515
+
516
+
517
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
518
+ """
519
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
520
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
521
+
522
+ Args:
523
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
524
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
525
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
526
+ """
527
+
528
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
529
+ print(f"Saving fp32 state dict to {output_file}")
530
+ torch.save(state_dict, output_file)
531
+
532
+
533
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
534
+ """
535
+ 1. Put the provided model to cpu
536
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
537
+ 3. Load it into the provided model
538
+
539
+ Args:
540
+ - ``model``: the model object to update
541
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
542
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
543
+
544
+ Returns:
545
+ - ``model`: modified model
546
+
547
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
548
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
549
+ conveniently placed for you in the checkpoint folder.
550
+
551
+ A typical usage might be ::
552
+
553
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
554
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
555
+ # submit to model hub or save the model to share with others
556
+
557
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
558
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
559
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
560
+
561
+ """
562
+ logger.info(f"Extracting fp32 weights")
563
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
564
+
565
+ logger.info(f"Overwriting model with fp32 weights")
566
+ model = model.cpu()
567
+ model.load_state_dict(state_dict, strict=False)
568
+
569
+ return model
570
+
571
+
572
+ if __name__ == "__main__":
573
+
574
+ parser = argparse.ArgumentParser()
575
+ parser.add_argument("checkpoint_dir",
576
+ type=str,
577
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
578
+ parser.add_argument(
579
+ "output_file",
580
+ type=str,
581
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
582
+ parser.add_argument("-t",
583
+ "--tag",
584
+ type=str,
585
+ default=None,
586
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
587
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
588
+ args = parser.parse_args()
589
+
590
+ debug = args.debug
591
+
592
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)