|
--- |
|
language: zh |
|
datasets: |
|
- common_voice |
|
metrics: |
|
- cer |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- speech |
|
- xlsr-fine-tuning-week |
|
license: apache-2.0 |
|
model-index: |
|
- name: XLSR Wav2Vec2 Large 53 - Chinese (zh-CN), by Yih-Dar SHIEH |
|
results: |
|
- task: |
|
name: Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice zh-CN |
|
type: common_voice |
|
args: zh-CN |
|
metrics: |
|
- name: Test CER |
|
type: cer |
|
value: 41.99 |
|
--- |
|
|
|
# Wav2Vec2-Large-XLSR-53-Chinese-zh-cn-gpt |
|
|
|
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Chinese (zh-CN) using the [Common Voice](https://huggingface.co/datasets/common_voice), included [Common Voice](https://huggingface.co/datasets/common_voice) Chinese (zh-TW) dataset (converting the label text to simplified Chinese). |
|
When using this model, make sure that your speech input is sampled at 16kHz. |
|
|
|
## Usage |
|
|
|
The model can be used directly (without a language model) as follows: |
|
|
|
```python |
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
|
|
test_dataset = load_dataset("common_voice", "zh-CN", split="test") |
|
|
|
processor = Wav2Vec2Processor.from_pretrained("ydshieh/wav2vec2-large-xlsr-53-chinese-zh-cn-gpt") |
|
model = Wav2Vec2ForCTC.from_pretrained("ydshieh/wav2vec2-large-xlsr-53-chinese-zh-cn-gpt") |
|
|
|
resampler = torchaudio.transforms.Resample(48_000, 16_000) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the aduio files as arrays |
|
def speech_file_to_array_fn(batch): |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
batch["speech"] = resampler(speech_array).squeeze().numpy() |
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits |
|
|
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
|
|
print("Prediction:", processor.batch_decode(predicted_ids)) |
|
print("Reference:", test_dataset[:2]["sentence"]) |
|
``` |
|
|
|
|
|
## Evaluation |
|
|
|
The model can be evaluated as follows on the zh-CN test data of Common Voice. |
|
Original CER calculation refer to https://huggingface.co/ctl/wav2vec2-large-xlsr-cantonese |
|
|
|
```python |
|
!pip install jiwer |
|
|
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset, load_metric |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
import re |
|
import jiwer |
|
|
|
def chunked_cer(targets, predictions, chunk_size=None): |
|
|
|
_predictions = [char for seq in predictions for char in list(seq)] |
|
_targets = [char for seq in targets for char in list(seq)] |
|
|
|
if chunk_size is None: return jiwer.wer(_targets, _predictions) |
|
|
|
start = 0 |
|
end = chunk_size |
|
H, S, D, I = 0, 0, 0, 0 |
|
|
|
while start < len(targets): |
|
|
|
_predictions = [char for seq in predictions[start:end] for char in list(seq)] |
|
_targets = [char for seq in targets[start:end] for char in list(seq)] |
|
chunk_metrics = jiwer.compute_measures(_targets, _predictions) |
|
H = H + chunk_metrics["hits"] |
|
S = S + chunk_metrics["substitutions"] |
|
D = D + chunk_metrics["deletions"] |
|
I = I + chunk_metrics["insertions"] |
|
start += chunk_size |
|
end += chunk_size |
|
|
|
return float(S + D + I) / float(H + S + D) |
|
|
|
test_dataset = load_dataset("common_voice", "zh-CN", split="test") |
|
|
|
processor = Wav2Vec2Processor.from_pretrained("ydshieh/wav2vec2-large-xlsr-53-chinese-zh-cn-gpt") |
|
model = Wav2Vec2ForCTC.from_pretrained("ydshieh/wav2vec2-large-xlsr-53-chinese-zh-cn-gpt") |
|
model.to("cuda") |
|
|
|
chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:"\\\\“\\\\%\\\\‘\\\\”\\\\�\\\\.\\\\⋯\\\\!\\\\-\\\\:\\\\–\\\\。\\\\》\\\\,\\\\)\\\\,\\\\?\\\\;\\\\~\\\\~\\\\…\\\\︰\\\\,\\\\(\\\\」\\\\‧\\\\《\\\\﹔\\\\、\\\\—\\\\/\\\\,\\\\「\\\\﹖\\\\·\\\\×\\\\̃\\\\̌\\\\ε\\\\λ\\\\μ\\\\и\\\\т\\\\─\\\\□\\\\〈\\\\〉\\\\『\\\\』\\\\ア\\\\オ\\\\カ\\\\チ\\\\ド\\\\ベ\\\\ャ\\\\ヤ\\\\ン\\\\・\\\\丶\\\\a\\\\b\\\\f\\\\g\\\\i\\\\n\\\\p\\\\t' + "\\\\']" |
|
|
|
resampler = torchaudio.transforms.Resample(48_000, 16_000) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the aduio files as arrays |
|
def speech_file_to_array_fn(batch): |
|
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") + " " |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
batch["speech"] = resampler(speech_array).squeeze().numpy() |
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the aduio files as arrays |
|
def evaluate(batch): |
|
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits |
|
|
|
pred_ids = torch.argmax(logits, dim=-1) |
|
batch["pred_strings"] = processor.batch_decode(pred_ids) |
|
return batch |
|
|
|
result = test_dataset.map(evaluate, batched=True, batch_size=8) |
|
|
|
print("CER: {:2f}".format(100 * chunked_cer(predictions=result["pred_strings"], targets=result["sentence"], chunk_size=1000))) |
|
``` |
|
|
|
**Test Result**: 41.987498 % |
|
|
|
|
|
## Training |
|
|
|
The Common Voice zh-CN `train`, `validation` were used for training, as well as Common Voice zh-TW `train`, `validation` and `test` datasets. |
|
|
|
The script used for training can be found [to be uploaded later](...) |