Update README.md
Browse files
README.md
CHANGED
@@ -53,12 +53,40 @@ pipeline_tag: text-generation
|
|
53 |
---
|
54 |
|
55 |
<h1 style='text-align: center '>BLOOM LM - 8bit</h1>
|
56 |
-
<h2 style='text-align: center '><em>BigScience Large Open-science Open-access Multilingual Language Model</em> </h2>
|
57 |
<h3 style='text-align: center '>Model Card</h3>
|
58 |
<img src="https://s3.amazonaws.com/moonup/production/uploads/1657124309515-5f17f0a0925b9863e28ad517.png" alt="BigScience Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
|
59 |
|
60 |
Version 1.0 / 26.May.2022
|
61 |
|
62 |
-
|
63 |
|
|
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
---
|
54 |
|
55 |
<h1 style='text-align: center '>BLOOM LM - 8bit</h1>
|
56 |
+
<h2 style='text-align: center '><em>BigScience Large Open-science Open-access Multilingual Language Model - 8bit</em> </h2>
|
57 |
<h3 style='text-align: center '>Model Card</h3>
|
58 |
<img src="https://s3.amazonaws.com/moonup/production/uploads/1657124309515-5f17f0a0925b9863e28ad517.png" alt="BigScience Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
|
59 |
|
60 |
Version 1.0 / 26.May.2022
|
61 |
|
62 |
+
Related paper: https://arxiv.org/abs/2208.07339
|
63 |
|
64 |
+
## TL;DR
|
65 |
|
66 |
+
This repository contains 8bit weights of `bloom-1b7` model. You can load this model using `transformers==4.28.0` and `bitsandbytes>0.37.2` out of the box !
|
67 |
+
|
68 |
+
```python
|
69 |
+
# pip install accelerate bitsandbytes
|
70 |
+
from transformers import AutoModelForCausalLM
|
71 |
+
|
72 |
+
model = AutoModelForCausalLM.from_pretrained("ybelkada/bloom-1b7-8bit")
|
73 |
+
```
|
74 |
+
|
75 |
+
## How to push 8bit weights?
|
76 |
+
|
77 |
+
First, make sure you are using `transformers` & `bitsandbytes` versions stated above. Then load your 8bit model as usual using `load_in_8bit=True`!
|
78 |
+
|
79 |
+
```python
|
80 |
+
# pip install accelerate bitsandbytes
|
81 |
+
from transformers import AutoModelForCausalLM
|
82 |
+
|
83 |
+
model = AutoModelForCausalLM.from_pretrained("bigscience/bloom-1b7", device_map="auto", load_in_8bit=True)
|
84 |
+
```
|
85 |
+
|
86 |
+
Then just call `push_to_hub` method or `save_pretrained` method if you want to save your 8bit model locally
|
87 |
+
|
88 |
+
```python
|
89 |
+
model.push_to_hub("{your_username}/bloom-1b7-8bit")
|
90 |
+
```
|
91 |
+
|
92 |
+
That's it!
|