yasamingol's picture
update model card README.md
d2fe0dd
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - recall
  - precision
model-index:
  - name: NLP_Model_Classifier
    results: []

NLP_Model_Classifier

This model is a fine-tuned version of HooshvareLab/bert-base-parsbert-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5617
  • Accuracy: {'accuracy': 0.912962962962963}
  • F1 Weighted: {'f1': 0.9141126838691339}
  • F1: {'f1': 0.912962962962963}
  • Recall: {'recall': 0.912962962962963}
  • Precision: {'precision': 0.912962962962963}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Weighted F1 Recall Precision
No log 1.0 270 0.4435 {'accuracy': 0.8851851851851852} {'f1': 0.8837658106568329} {'f1': 0.8851851851851851} {'recall': 0.8851851851851852} {'precision': 0.8851851851851852}
0.6248 2.0 540 0.4601 {'accuracy': 0.9018518518518519} {'f1': 0.9003935312696059} {'f1': 0.9018518518518519} {'recall': 0.9018518518518519} {'precision': 0.9018518518518519}
0.6248 3.0 810 0.5067 {'accuracy': 0.9018518518518519} {'f1': 0.903263191345543} {'f1': 0.9018518518518519} {'recall': 0.9018518518518519} {'precision': 0.9018518518518519}
0.0931 4.0 1080 0.5500 {'accuracy': 0.912962962962963} {'f1': 0.9137945012321058} {'f1': 0.912962962962963} {'recall': 0.912962962962963} {'precision': 0.912962962962963}
0.0931 5.0 1350 0.5617 {'accuracy': 0.912962962962963} {'f1': 0.9141126838691339} {'f1': 0.912962962962963} {'recall': 0.912962962962963} {'precision': 0.912962962962963}

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3