yangwang825
commited on
Model save
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: facebook/hubert-base-ls960
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: bs16-lr2e-5-epoch10-seqlen10
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# bs16-lr2e-5-epoch10-seqlen10
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 1.6936
|
22 |
+
- Accuracy: 0.6167
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 2e-05
|
42 |
+
- train_batch_size: 16
|
43 |
+
- eval_batch_size: 1
|
44 |
+
- seed: 1016
|
45 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_ratio: 0.1
|
48 |
+
- num_epochs: 10.0
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
54 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
55 |
+
| 6.1254 | 1.0 | 8648 | 6.3700 | 0.0055 |
|
56 |
+
| 4.5846 | 2.0 | 17296 | 5.1543 | 0.0521 |
|
57 |
+
| 3.6412 | 3.0 | 25944 | 4.2039 | 0.1302 |
|
58 |
+
| 2.6422 | 4.0 | 34592 | 3.4738 | 0.2416 |
|
59 |
+
| 1.9601 | 5.0 | 43240 | 2.7758 | 0.3746 |
|
60 |
+
| 1.564 | 6.0 | 51888 | 2.3559 | 0.4623 |
|
61 |
+
| 1.2376 | 7.0 | 60536 | 2.0383 | 0.5352 |
|
62 |
+
| 1.0652 | 8.0 | 69184 | 1.8766 | 0.5666 |
|
63 |
+
| 0.9146 | 9.0 | 77832 | 1.7436 | 0.6059 |
|
64 |
+
| 0.8688 | 10.0 | 86480 | 1.6936 | 0.6167 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.46.2
|
70 |
+
- Pytorch 2.0.0+cu117
|
71 |
+
- Datasets 3.1.0
|
72 |
+
- Tokenizers 0.20.3
|