|
--- |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
model-index: |
|
- name: twiiter_try15_fold0 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# twiiter_try15_fold0 |
|
|
|
This model is a fine-tuned version of [ProsusAI/finbert](https://huggingface.co/ProsusAI/finbert) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2122 |
|
- F1: 0.9766 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 0.2209 | 1.0 | 500 | 0.1609 | 0.9642 | |
|
| 0.0596 | 2.0 | 1000 | 0.1312 | 0.9705 | |
|
| 0.0274 | 3.0 | 1500 | 0.1583 | 0.9746 | |
|
| 0.0128 | 4.0 | 2000 | 0.1524 | 0.9784 | |
|
| 0.0098 | 5.0 | 2500 | 0.1748 | 0.9784 | |
|
| 0.0101 | 6.0 | 3000 | 0.1385 | 0.9826 | |
|
| 0.0047 | 7.0 | 3500 | 0.1709 | 0.9779 | |
|
| 0.0032 | 8.0 | 4000 | 0.2081 | 0.9739 | |
|
| 0.0018 | 9.0 | 4500 | 0.1727 | 0.9776 | |
|
| 0.0013 | 10.0 | 5000 | 0.2054 | 0.9767 | |
|
| 0.002 | 11.0 | 5500 | 0.1938 | 0.9762 | |
|
| 0.0029 | 12.0 | 6000 | 0.2310 | 0.9743 | |
|
| 0.0 | 13.0 | 6500 | 0.1994 | 0.9774 | |
|
| 0.0 | 14.0 | 7000 | 0.2111 | 0.9761 | |
|
| 0.0 | 15.0 | 7500 | 0.2122 | 0.9766 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|