yahyaabd's picture
Add new SentenceTransformer model
09d13eb verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:967831
  - loss:MultipleNegativesRankingLoss
base_model: denaya/indoSBERT-large
widget:
  - source_sentence: Penghasilan freelancer per provinsi, beda umur 2016
    sentences:
      - >-
        Rata-rata Pendapatan Bersih Pekerja Bebas Menurut Provinsi dan Kelompok
        Umur (ribu rupiah), 2016
      - >-
        Konkordansi Klasifikasi Tabel Inter Regional Input-Output Indonesia,
        2016 (52 Industri - 17 Lapangan Usaha)
      - >-
        Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi
        Makanan dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Maluku,
        2018-2023
  - source_sentence: >-
      Tren angka partisipasi sekolah di Indonesia (7-23 tahun) berdasarkan
      gender dan kelompok umur, 2015-2023
    sentences:
      - >-
        Jumlah Sekolah, Guru, dan Murid Sekolah Dasar (SD) di Bawah Kementerian
        Pendidikan dan Kebudayaan Menurut Provinsi Tahun Ajaran
        2011/2012-2015/2016
      - >-
        Rata-rata Harian Konsumsi Protein Per Kapita dan Konsumsi Kalori Per
        Kapita Tahun 1990 - 2023
      - >-
        Persentase Penduduk Usia 7-23 Tahun Menurut Jenis Kelamin, Kelompok Umur
        Sekolah, dan Partisipasi Sekolah, 2015-2023
  - source_sentence: Sumber penerangan rumah tangga per provinsi Indonesia 2018
    sentences:
      - Nutrisi
      - >-
        Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan
        Lapangan Pekerjaan Utama (ribu rupiah), 2016
      - >-
        Persentase Rumah Tangga Menurut Provinsi dan Sumber Penerangan,
        2015-2021
  - source_sentence: >-
      Rumah tangga dengan lampu hemat energi per provinsi, 2014 vs 2021 (urban
      vs rural)
    sentences:
      - >-
        Persentase Rumah Tangga yang Menggunakan Lampu Hemat Energi Menurut
        Provinsi dan Daerah Tempat Tinggal, 2014, 2021
      - >-
        Luas Daerah Pengaliran dan Debit dari Beberapa Sungai yang Daerah
        Pengalirannya Lebih dari 100 km2, 2015
      - >-
        Perolehan Suara dan Kursi Dewan Perwakilan Rakyat (DPR) Menurut Partai
        Politik Hasil Pemilu Tahun 2009 dan 2014
  - source_sentence: >-
      Upah bulanan rata-rata: Hubungan pendidikan tertinggi dan sektor pekerjaan
      utama, data 2021
    sentences:
      - >-
        IHK dan Rata-rata Upah per Bulan Buruh Peternakan dan Perikanan di Bawah
        Mandor (Supervisor), 2007-2014 (2007=100)
      - >-
        Rata-rata Upah/Gaji Bersih Sebulan Buruh/Karyawan Pegawai Menurut
        Pendidikan Tertinggi dan Jenis Pekerjaan Utama, 2021
      - >-
        Rata-rata Upah/Gaji Bersih sebulan Buruh/Karyawan Pegawai Menurut
        Pendidikan Tertinggi dan Lapangan Pekerjaan Utama, 2021
datasets:
  - yahyaabd/statictable-triplets-all
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@1
  - cosine_ndcg@5
  - cosine_ndcg@10
  - cosine_mrr@1
  - cosine_mrr@5
  - cosine_mrr@10
  - cosine_map@1
  - cosine_map@5
  - cosine_map@10
model-index:
  - name: SentenceTransformer based on denaya/indoSBERT-large
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: bps statictable ir
          type: bps-statictable-ir
        metrics:
          - type: cosine_accuracy@1
            value: 0.9218241042345277
            name: Cosine Accuracy@1
          - type: cosine_accuracy@5
            value: 0.990228013029316
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.996742671009772
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.9218241042345277
            name: Cosine Precision@1
          - type: cosine_precision@5
            value: 0.2247557003257329
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.13159609120521173
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.7225077889088528
            name: Cosine Recall@1
          - type: cosine_recall@5
            value: 0.793020064240505
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8181542032723246
            name: Cosine Recall@10
          - type: cosine_ndcg@1
            value: 0.9218241042345277
            name: Cosine Ndcg@1
          - type: cosine_ndcg@5
            value: 0.8340748596494166
            name: Cosine Ndcg@5
          - type: cosine_ndcg@10
            value: 0.8332473439965864
            name: Cosine Ndcg@10
          - type: cosine_mrr@1
            value: 0.9218241042345277
            name: Cosine Mrr@1
          - type: cosine_mrr@5
            value: 0.9522258414766559
            name: Cosine Mrr@5
          - type: cosine_mrr@10
            value: 0.9532340623545834
            name: Cosine Mrr@10
          - type: cosine_map@1
            value: 0.9218241042345277
            name: Cosine Map@1
          - type: cosine_map@5
            value: 0.7919598262757872
            name: Cosine Map@5
          - type: cosine_map@10
            value: 0.7847729133274736
            name: Cosine Map@10

SentenceTransformer based on denaya/indoSBERT-large

This is a sentence-transformers model finetuned from denaya/indoSBERT-large on the statictable-triplets-all dataset. It maps sentences & paragraphs to a 256-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Dense({'in_features': 1024, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/indoSBERT-Large-mnrl-2")
# Run inference
sentences = [
    'Upah bulanan rata-rata: Hubungan pendidikan tertinggi dan sektor pekerjaan utama, data 2021',
    'Rata-rata Upah/Gaji Bersih sebulan Buruh/Karyawan Pegawai Menurut Pendidikan Tertinggi dan Lapangan Pekerjaan Utama, 2021',
    'Rata-rata Upah/Gaji Bersih Sebulan Buruh/Karyawan Pegawai Menurut Pendidikan Tertinggi dan Jenis Pekerjaan Utama, 2021',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 256]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.9218
cosine_accuracy@5 0.9902
cosine_accuracy@10 0.9967
cosine_precision@1 0.9218
cosine_precision@5 0.2248
cosine_precision@10 0.1316
cosine_recall@1 0.7225
cosine_recall@5 0.793
cosine_recall@10 0.8182
cosine_ndcg@1 0.9218
cosine_ndcg@5 0.8341
cosine_ndcg@10 0.8332
cosine_mrr@1 0.9218
cosine_mrr@5 0.9522
cosine_mrr@10 0.9532
cosine_map@1 0.9218
cosine_map@5 0.792
cosine_map@10 0.7848

Training Details

Training Dataset

statictable-triplets-all

  • Dataset: statictable-triplets-all at 24979b4
  • Size: 967,831 training samples
  • Columns: query, pos, and neg
  • Approximate statistics based on the first 1000 samples:
    query pos neg
    type string string string
    details
    • min: 3 tokens
    • mean: 16.97 tokens
    • max: 30 tokens
    • min: 3 tokens
    • mean: 20.79 tokens
    • max: 48 tokens
    • min: 4 tokens
    • mean: 20.94 tokens
    • max: 48 tokens
  • Samples:
    query pos neg
    Data input-output antar daerah, 34 provinsi: Transaksi domestik (52 industri, harga produsen, 2016) Tabel Inter Regional Input-Output Indonesia Transaksi Domestik Atas Dasar Harga Produsen Menurut 34 Provinsi dan 52 Industri, 2016 (Juta Rupiah) Penduduk Berumur 15 Tahun Ke Atas yang Bekerja Selama Seminggu yang Lalu Menurut Golongan Umur dan Jumlah Jam Kerja Seluruhnya, 2008 - 2024
    Data total penghasilan berbagai golongan rumah tangga setelah dipotong pajak, tahun 2000 (dalam miliar rupiah) Jumlah Pendapatan Setelah Pajak Menurut Golongan Rumah Tangga (miliar rupiah), 2000, 2005, dan 2008 Institusi Korporasi Non Finansial Neraca Institusi Terintegrasi ( triliun rupiah), 2016 2022
    Rumah tangga dengan area resapan, data per provinsi, 2014 Persentase Rumah Tangga Menurut Provinsi dan Keberadaan Area Resapan Air, 2013-2014 Nilai Produksi dan Biaya Produksi per Musim Tanam per Hektar Budidaya Tanaman Padi Sawah, Padi Ladang, Jagung, dan Kedelai, 2017
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

statictable-triplets-all

  • Dataset: statictable-triplets-all at 24979b4
  • Size: 967,831 evaluation samples
  • Columns: query, pos, and neg
  • Approximate statistics based on the first 1000 samples:
    query pos neg
    type string string string
    details
    • min: 3 tokens
    • mean: 16.69 tokens
    • max: 32 tokens
    • min: 3 tokens
    • mean: 20.85 tokens
    • max: 48 tokens
    • min: 3 tokens
    • mean: 20.9 tokens
    • max: 48 tokens
  • Samples:
    query pos neg
    Kredit UMKM bank umum (miliar rupiah), 2012-2016 Posisi Kredit Usaha Mikro, Kecil, dan Menengah (UMKM) 1 pada Bank Umum (miliar rupiah), 2012-2016 Jumlah Penghuni Lapas per Kanwil
    Infant Mortality Rate di Indonesia per provinsi, 1971 Angka Kematian Bayi/AKB (Infant Mortality Rate/IMR) Menurut Provinsi, 1971-2020 Jumlah Sekolah, Guru, dan Murid Sekolah Menengah Kejuruan (SMK) di Bawah Kementrian Pendidikan dan Kebudayaan Menurut Provinsi tahun ajaran 2011/2012-2015/2016
    Partisipasi sekolah anak dan remaja: Data persentase usia 7-24 tahun per gender dan kelompok umur, 2021 Persentase Penduduk Usia 7-24 Tahun Menurut Jenis Kelamin, Kelompok Umur, dan Partisipasi Sekolah, 2002-2023 Tabel Input-Output Indonesia Transaksi Total Atas Dasar Harga Pembeli (17 Produk), 2016 (Juta Rupiah)
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • fp16: True
  • load_best_model_at_end: True
  • eval_on_start: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: True
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss bps-statictable-ir_cosine_ndcg@10
0 0 - 0.7678 0.7378
0.1391 100 0.2164 0.0292 0.8324
0.2782 200 0.032 0.0143 0.8383
0.4172 300 0.0221 0.0077 0.8392
0.5563 400 0.0088 0.0055 0.8391
0.6954 500 0.0058 0.0033 0.8301
0.8345 600 0.0039 0.0016 0.8331
0.9736 700 0.0027 0.0019 0.8332
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 3.4.1
  • Transformers: 4.48.3
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.3.0
  • Datasets: 3.4.1
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}