metadata
language: en
tags:
- PROP
- Pretrain4IR
license: apache-2.0
datasets:
- msmarco
PROP-marco-step400k
PROP, Pre-training with Representative wOrds Prediction, is a new pre-training method tailored for ad-hoc retrieval. PROP is inspired by the classical statistical language model for IR, specifically the query likelihood model, which assumes that the query is generated as the piece of text representative of the “ideal” document. Based on this idea, we construct the representative words prediction (ROP) task for pre-training. The full paper can be found here.
This model is pre-trained with more steps than PROP-marco on MS MARCO document corpus, and used at the MS MARCO Document Ranking Leaderboard where we reached 1st place.
Citation
If you find our work useful, please consider citing our paper:
@inproceedings{DBLP:conf/wsdm/MaGZFJC21,
author = {Xinyu Ma and
Jiafeng Guo and
Ruqing Zhang and
Yixing Fan and
Xiang Ji and
Xueqi Cheng},
editor = {Liane Lewin{-}Eytan and
David Carmel and
Elad Yom{-}Tov and
Eugene Agichtein and
Evgeniy Gabrilovich},
title = {{PROP:} Pre-training with Representative Words Prediction for Ad-hoc
Retrieval},
booktitle = {{WSDM} '21, The Fourteenth {ACM} International Conference on Web Search
and Data Mining, Virtual Event, Israel, March 8-12, 2021},
pages = {283--291},
publisher = {{ACM}},
year = {2021},
url = {https://doi.org/10.1145/3437963.3441777},
doi = {10.1145/3437963.3441777},
timestamp = {Wed, 07 Apr 2021 16:17:44 +0200},
biburl = {https://dblp.org/rec/conf/wsdm/MaGZFJC21.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}