ChloeAuYeung commited on
Commit
662ebdf
·
1 Parent(s): f4dc41a

upload model files

Browse files
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "XverseForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_xverse.XverseConfig",
7
+ "AutoModelForCausalLM": "modeling_xverse.XverseForCausalLM"
8
+ },
9
+ "pad_token_id": 1,
10
+ "bos_token_id": 2,
11
+ "eos_token_id": 3,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 8192,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 22016,
16
+ "max_position_embeddings": 16384,
17
+ "model_type": "xverse",
18
+ "num_attention_heads": 64,
19
+ "num_hidden_layers": 80,
20
+ "rms_norm_eps": 1e-06,
21
+ "tie_word_embeddings": false,
22
+ "torch_dtype": "bfloat16",
23
+ "transformers_version": "4.30.2",
24
+ "use_cache": true,
25
+ "vocab_size": 100534
26
+ }
configuration.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"framework":"Pytorch","task":"text-generation"}
configuration_xverse.py ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ XVERSE model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.utils import logging
24
+
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+ XVERSE_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
29
+
30
+
31
+ class XverseConfig(PretrainedConfig):
32
+ r"""
33
+ This is the configuration class to store the configuration of a [`XverseModel`]. It is used to instantiate an Xverse
34
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
35
+ defaults will yield a similar configuration to that of the XVERSE-13B.
36
+
37
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
38
+ documentation from [`PretrainedConfig`] for more information.
39
+
40
+
41
+ Args:
42
+ vocab_size (`int`, *optional*, defaults to 100278):
43
+ Vocabulary size of the XVERSE model. Defines the number of different tokens that can be represented by the
44
+ `inputs_ids` passed when calling [`XverseModel`]
45
+ hidden_size (`int`, *optional*, defaults to 5120):
46
+ Dimension of the hidden representations.
47
+ intermediate_size (`int`, *optional*, defaults to 13824):
48
+ Dimension of the MLP representations.
49
+ num_hidden_layers (`int`, *optional*, defaults to 40):
50
+ Number of hidden layers in the Transformer encoder.
51
+ num_attention_heads (`int`, *optional*, defaults to 40):
52
+ Number of attention heads for each attention layer in the Transformer encoder.
53
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
54
+ The non-linear activation function (function or string) in the decoder.
55
+ max_position_embeddings (`int`, *optional*, defaults to 8192):
56
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
57
+ just in case (e.g., 512 or 1024 or 2048).
58
+ initializer_range (`float`, *optional*, defaults to 0.02):
59
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
60
+ rms_norm_eps (`float`, *optional*, defaults to 1e-6):
61
+ The epsilon used by the rms normalization layers.
62
+ use_cache (`bool`, *optional*, defaults to `True`):
63
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
64
+ relevant if `config.is_decoder=True`.
65
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
66
+ Whether to tie weight embeddings
67
+
68
+ Example:
69
+
70
+ ```python
71
+ >>> from transformers import XverseModel, XverseConfig
72
+
73
+ >>> # Initializing a Xverse XVERSE-13B style configuration
74
+ >>> configuration = XverseConfig()
75
+
76
+ >>> # Initializing a model from the XVERSE-13B style configuration
77
+ >>> model = XverseModel(configuration)
78
+
79
+ >>> # Accessing the model configuration
80
+ >>> configuration = model.config
81
+ ```"""
82
+ model_type = "xverse"
83
+ keys_to_ignore_at_inference = ["past_key_values"]
84
+
85
+ def __init__(
86
+ self,
87
+ vocab_size=100534,
88
+ hidden_size=8192,
89
+ intermediate_size=22016,
90
+ num_hidden_layers=80,
91
+ num_attention_heads=64,
92
+ hidden_act="silu",
93
+ max_position_embeddings=16384,
94
+ max_tokenizer_truncation=16384,
95
+ initializer_range=0.02,
96
+ rms_norm_eps=1e-6,
97
+ use_cache=True,
98
+ pad_token_id=None,
99
+ bos_token_id=1,
100
+ eos_token_id=2,
101
+ tie_word_embeddings=False,
102
+ **kwargs,
103
+ ):
104
+ self.vocab_size = vocab_size
105
+ self.max_position_embeddings = max_position_embeddings
106
+ self.hidden_size = hidden_size
107
+ self.intermediate_size = intermediate_size
108
+ self.num_hidden_layers = num_hidden_layers
109
+ self.num_attention_heads = num_attention_heads
110
+
111
+ self.hidden_act = hidden_act
112
+ self.initializer_range = initializer_range
113
+ self.rms_norm_eps = rms_norm_eps
114
+ self.use_cache = use_cache
115
+ self.max_tokenizer_truncation = max_tokenizer_truncation
116
+
117
+ super().__init__(
118
+ pad_token_id=pad_token_id,
119
+ bos_token_id=bos_token_id,
120
+ eos_token_id=eos_token_id,
121
+ tie_word_embeddings=tie_word_embeddings,
122
+ **kwargs,
123
+ )
generation_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "pad_token_id": 1,
3
+ "bos_token_id": 2,
4
+ "eos_token_id": 3,
5
+ "max_new_tokens": 2048,
6
+ "temperature": 0.5,
7
+ "top_k": 30,
8
+ "top_p": 0.85,
9
+ "repetition_penalty": 1.1,
10
+ "do_sample": true,
11
+ "transformers_version": "4.30.2"
12
+ }
13
+
modeling_xverse.py ADDED
@@ -0,0 +1,764 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch XVERSE model."""
21
+ import math
22
+ from typing import List, Optional, Tuple, Union
23
+
24
+ import torch
25
+ import torch.nn.functional as F
26
+ import torch.utils.checkpoint
27
+ from torch import nn
28
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
29
+
30
+ from transformers.activations import ACT2FN
31
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
32
+ from transformers.modeling_utils import PreTrainedModel
33
+ from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
34
+ from transformers.generation.utils import GenerationConfig
35
+ from .configuration_xverse import XverseConfig
36
+
37
+
38
+ logger = logging.get_logger(__name__)
39
+
40
+ _CONFIG_FOR_DOC = "XverseConfig"
41
+
42
+
43
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
44
+ def _make_causal_mask(
45
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
46
+ ):
47
+ """
48
+ Make causal mask used for bi-directional self-attention.
49
+ """
50
+ bsz, tgt_len = input_ids_shape
51
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
52
+ mask_cond = torch.arange(mask.size(-1), device=device)
53
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
54
+ mask = mask.to(dtype)
55
+
56
+ if past_key_values_length > 0:
57
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
58
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
59
+
60
+
61
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
62
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
63
+ """
64
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
65
+ """
66
+ bsz, src_len = mask.size()
67
+ tgt_len = tgt_len if tgt_len is not None else src_len
68
+
69
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
70
+
71
+ inverted_mask = 1.0 - expanded_mask
72
+
73
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
74
+
75
+
76
+ class XverseRMSNorm(nn.Module):
77
+ def __init__(self, hidden_size, eps=1e-6):
78
+ """
79
+ XverseRMSNorm is equivalent to T5LayerNorm
80
+ """
81
+ super().__init__()
82
+ self.weight = nn.Parameter(torch.ones(hidden_size))
83
+ self.variance_epsilon = eps
84
+
85
+ def forward(self, hidden_states):
86
+ input_dtype = hidden_states.dtype
87
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
88
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
89
+
90
+ return (self.weight * hidden_states).to(input_dtype)
91
+
92
+
93
+ class XverseRotaryEmbedding(torch.nn.Module):
94
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
95
+ super().__init__()
96
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
97
+ self.register_buffer("inv_freq", inv_freq)
98
+
99
+ # Build here to make `torch.jit.trace` work.
100
+ self.max_seq_len_cached = max_position_embeddings
101
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
102
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
103
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
104
+ emb = torch.cat((freqs, freqs), dim=-1)
105
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
106
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
107
+
108
+ def forward(self, x, seq_len=None):
109
+ # x: [bs, num_attention_heads, seq_len, head_size]
110
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
111
+ if seq_len > self.max_seq_len_cached:
112
+ self.max_seq_len_cached = seq_len
113
+ t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
114
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
115
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
116
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
117
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
118
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
119
+ return (
120
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
121
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
122
+ )
123
+
124
+
125
+ def rotate_half(x):
126
+ """Rotates half the hidden dims of the input."""
127
+ x1 = x[..., : x.shape[-1] // 2]
128
+ x2 = x[..., x.shape[-1] // 2 :]
129
+ return torch.cat((-x2, x1), dim=-1)
130
+
131
+
132
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
133
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
134
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
135
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
136
+ cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
137
+ sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
138
+ q_embed = (q * cos) + (rotate_half(q) * sin)
139
+ k_embed = (k * cos) + (rotate_half(k) * sin)
140
+ return q_embed, k_embed
141
+
142
+
143
+ class XverseMLP(nn.Module):
144
+ def __init__(
145
+ self,
146
+ hidden_size: int,
147
+ intermediate_size: int,
148
+ hidden_act: str,
149
+ ):
150
+ super().__init__()
151
+ self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
152
+ self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
153
+ self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
154
+ self.act_fn = ACT2FN[hidden_act]
155
+
156
+ def forward(self, x):
157
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
158
+
159
+
160
+ class XverseAttention(nn.Module):
161
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
162
+
163
+ def __init__(self, config: XverseConfig):
164
+ super().__init__()
165
+ self.config = config
166
+ self.hidden_size = config.hidden_size
167
+ self.num_heads = config.num_attention_heads
168
+ self.head_dim = self.hidden_size // self.num_heads
169
+ self.max_position_embeddings = config.max_position_embeddings
170
+
171
+ if (self.head_dim * self.num_heads) != self.hidden_size:
172
+ raise ValueError(
173
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
174
+ f" and `num_heads`: {self.num_heads})."
175
+ )
176
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
177
+ self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
178
+ self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
179
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
180
+ self.rotary_emb = XverseRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
181
+
182
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
183
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
184
+
185
+ def forward(
186
+ self,
187
+ hidden_states: torch.Tensor,
188
+ attention_mask: Optional[torch.Tensor] = None,
189
+ position_ids: Optional[torch.LongTensor] = None,
190
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
191
+ output_attentions: bool = False,
192
+ use_cache: bool = False,
193
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
194
+ bsz, q_len, _ = hidden_states.size()
195
+
196
+ query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
197
+ key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
198
+ value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
199
+
200
+ kv_seq_len = key_states.shape[-2]
201
+ if past_key_value is not None:
202
+ kv_seq_len += past_key_value[0].shape[-2]
203
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
204
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
205
+ # [bsz, nh, t, hd]
206
+
207
+ if past_key_value is not None:
208
+ # reuse k, v, self_attention
209
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
210
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
211
+
212
+ past_key_value = (key_states, value_states) if use_cache else None
213
+
214
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
215
+
216
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
217
+ raise ValueError(
218
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
219
+ f" {attn_weights.size()}"
220
+ )
221
+
222
+ if attention_mask is not None:
223
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
224
+ raise ValueError(
225
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
226
+ )
227
+ attn_weights = attn_weights + attention_mask
228
+ attn_weights = torch.max(
229
+ attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min, device=attn_weights.device)
230
+ )
231
+
232
+ # upcast attention to fp32
233
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
234
+ attn_output = torch.matmul(attn_weights, value_states)
235
+
236
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
237
+ raise ValueError(
238
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
239
+ f" {attn_output.size()}"
240
+ )
241
+
242
+ attn_output = attn_output.transpose(1, 2)
243
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
244
+
245
+ attn_output = self.o_proj(attn_output)
246
+
247
+ if not output_attentions:
248
+ attn_weights = None
249
+
250
+ return attn_output, attn_weights, past_key_value
251
+
252
+
253
+ class XverseDecoderLayer(nn.Module):
254
+ def __init__(self, config: XverseConfig):
255
+ super().__init__()
256
+ self.hidden_size = config.hidden_size
257
+ self.self_attn = XverseAttention(config=config)
258
+ self.mlp = XverseMLP(
259
+ hidden_size=self.hidden_size,
260
+ intermediate_size=config.intermediate_size,
261
+ hidden_act=config.hidden_act,
262
+ )
263
+ self.input_layernorm = XverseRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
264
+ self.post_attention_layernorm = XverseRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
265
+
266
+ def forward(
267
+ self,
268
+ hidden_states: torch.Tensor,
269
+ attention_mask: Optional[torch.Tensor] = None,
270
+ position_ids: Optional[torch.LongTensor] = None,
271
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
272
+ output_attentions: Optional[bool] = False,
273
+ use_cache: Optional[bool] = False,
274
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
275
+ """
276
+ Args:
277
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
278
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
279
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
280
+ output_attentions (`bool`, *optional*):
281
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
282
+ returned tensors for more detail.
283
+ use_cache (`bool`, *optional*):
284
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
285
+ (see `past_key_values`).
286
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
287
+ """
288
+
289
+ residual = hidden_states
290
+
291
+ hidden_states = self.input_layernorm(hidden_states)
292
+
293
+ # Self Attention
294
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
295
+ hidden_states=hidden_states,
296
+ attention_mask=attention_mask,
297
+ position_ids=position_ids,
298
+ past_key_value=past_key_value,
299
+ output_attentions=output_attentions,
300
+ use_cache=use_cache,
301
+ )
302
+ hidden_states = residual + hidden_states
303
+
304
+ # Fully Connected
305
+ residual = hidden_states
306
+ hidden_states = self.post_attention_layernorm(hidden_states)
307
+ hidden_states = self.mlp(hidden_states)
308
+ hidden_states = residual + hidden_states
309
+
310
+ outputs = (hidden_states,)
311
+
312
+ if output_attentions:
313
+ outputs += (self_attn_weights,)
314
+
315
+ if use_cache:
316
+ outputs += (present_key_value,)
317
+
318
+ return outputs
319
+
320
+
321
+ XVERSE_START_DOCSTRING = r"""
322
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
323
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
324
+ etc.)
325
+
326
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
327
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
328
+ and behavior.
329
+
330
+ Parameters:
331
+ config ([`XverseConfig`]):
332
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
333
+ load the weights associated with the model, only the configuration. Check out the
334
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
335
+ """
336
+
337
+
338
+ @add_start_docstrings(
339
+ "The bare Xverse Model outputting raw hidden-states without any specific head on top.",
340
+ XVERSE_START_DOCSTRING,
341
+ )
342
+ class XversePreTrainedModel(PreTrainedModel):
343
+ config_class = XverseConfig
344
+ base_model_prefix = "model"
345
+ supports_gradient_checkpointing = True
346
+ _no_split_modules = ["XverseDecoderLayer"]
347
+ _skip_keys_device_placement = "past_key_values"
348
+ _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
349
+
350
+ def _init_weights(self, module):
351
+ std = self.config.initializer_range
352
+ if isinstance(module, nn.Linear):
353
+ module.weight.data.normal_(mean=0.0, std=std)
354
+ if module.bias is not None:
355
+ module.bias.data.zero_()
356
+ elif isinstance(module, nn.Embedding):
357
+ module.weight.data.normal_(mean=0.0, std=std)
358
+ if module.padding_idx is not None:
359
+ module.weight.data[module.padding_idx].zero_()
360
+
361
+ def _set_gradient_checkpointing(self, module, value=False):
362
+ if isinstance(module, XverseModel):
363
+ module.gradient_checkpointing = value
364
+
365
+
366
+ XVERSE_INPUTS_DOCSTRING = r"""
367
+ Args:
368
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
369
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
370
+ it.
371
+
372
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
373
+ [`PreTrainedTokenizer.__call__`] for details.
374
+
375
+ [What are input IDs?](../glossary#input-ids)
376
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
377
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
378
+
379
+ - 1 for tokens that are **not masked**,
380
+ - 0 for tokens that are **masked**.
381
+
382
+ [What are attention masks?](../glossary#attention-mask)
383
+
384
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
385
+ [`PreTrainedTokenizer.__call__`] for details.
386
+
387
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
388
+ `past_key_values`).
389
+
390
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
391
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
392
+ information on the default strategy.
393
+
394
+ - 1 indicates the head is **not masked**,
395
+ - 0 indicates the head is **masked**.
396
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
397
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
398
+ config.n_positions - 1]`.
399
+
400
+ [What are position IDs?](../glossary#position-ids)
401
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
402
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
403
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
404
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
405
+
406
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
407
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
408
+
409
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
410
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
411
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
412
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
413
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
414
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
415
+ model's internal embedding lookup matrix.
416
+ use_cache (`bool`, *optional*):
417
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
418
+ `past_key_values`).
419
+ output_attentions (`bool`, *optional*):
420
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
421
+ tensors for more detail.
422
+ output_hidden_states (`bool`, *optional*):
423
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
424
+ more detail.
425
+ return_dict (`bool`, *optional*):
426
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
427
+ """
428
+
429
+ @add_start_docstrings(
430
+ "The bare Xverse Model outputting raw hidden-states without any specific head on top.",
431
+ XVERSE_START_DOCSTRING,
432
+ )
433
+ class XverseModel(XversePreTrainedModel):
434
+ """
435
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`XverseDecoderLayer`]
436
+
437
+ Args:
438
+ config: XverseConfig
439
+ """
440
+
441
+ def __init__(self, config: XverseConfig):
442
+ super().__init__(config)
443
+ self.padding_idx = config.pad_token_id
444
+ self.vocab_size = config.vocab_size
445
+
446
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
447
+ self.layers = nn.ModuleList([XverseDecoderLayer(config) for _ in range(config.num_hidden_layers)])
448
+ self.norm = XverseRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
449
+
450
+ self.gradient_checkpointing = False
451
+ # Initialize weights and apply final processing
452
+ self.post_init()
453
+
454
+ def get_input_embeddings(self):
455
+ return self.embed_tokens
456
+
457
+ def set_input_embeddings(self, value):
458
+ self.embed_tokens = value
459
+
460
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
461
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
462
+ # create causal mask
463
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
464
+ combined_attention_mask = None
465
+ if input_shape[-1] > 1:
466
+ combined_attention_mask = _make_causal_mask(
467
+ input_shape,
468
+ inputs_embeds.dtype,
469
+ device=inputs_embeds.device,
470
+ past_key_values_length=past_key_values_length,
471
+ )
472
+
473
+ if attention_mask is not None:
474
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
475
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
476
+ inputs_embeds.device
477
+ )
478
+ combined_attention_mask = (
479
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
480
+ )
481
+
482
+ return combined_attention_mask
483
+
484
+ @add_start_docstrings_to_model_forward(XVERSE_INPUTS_DOCSTRING)
485
+ def forward(
486
+ self,
487
+ input_ids: torch.LongTensor = None,
488
+ attention_mask: Optional[torch.Tensor] = None,
489
+ position_ids: Optional[torch.LongTensor] = None,
490
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
491
+ inputs_embeds: Optional[torch.FloatTensor] = None,
492
+ use_cache: Optional[bool] = None,
493
+ output_attentions: Optional[bool] = None,
494
+ output_hidden_states: Optional[bool] = None,
495
+ return_dict: Optional[bool] = None,
496
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
497
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
498
+ output_hidden_states = (
499
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
500
+ )
501
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
502
+
503
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
504
+
505
+ # retrieve input_ids and inputs_embeds
506
+ if input_ids is not None and inputs_embeds is not None:
507
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
508
+ elif input_ids is not None:
509
+ batch_size, seq_length = input_ids.shape
510
+ elif inputs_embeds is not None:
511
+ batch_size, seq_length, _ = inputs_embeds.shape
512
+ else:
513
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
514
+
515
+ seq_length_with_past = seq_length
516
+ past_key_values_length = 0
517
+
518
+ if past_key_values is not None:
519
+ past_key_values_length = past_key_values[0][0].shape[2]
520
+ seq_length_with_past = seq_length_with_past + past_key_values_length
521
+
522
+ if position_ids is None:
523
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
524
+ position_ids = torch.arange(
525
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
526
+ )
527
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
528
+ else:
529
+ position_ids = position_ids.view(-1, seq_length).long()
530
+
531
+ if inputs_embeds is None:
532
+ inputs_embeds = self.embed_tokens(input_ids)
533
+ # embed positions
534
+ if attention_mask is None:
535
+ attention_mask = torch.ones(
536
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
537
+ )
538
+ attention_mask = self._prepare_decoder_attention_mask(
539
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
540
+ )
541
+
542
+ hidden_states = inputs_embeds
543
+
544
+ if self.gradient_checkpointing and self.training:
545
+ if use_cache:
546
+ logger.warning_once(
547
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
548
+ )
549
+ use_cache = False
550
+
551
+ # decoder layers
552
+ all_hidden_states = () if output_hidden_states else None
553
+ all_self_attns = () if output_attentions else None
554
+ next_decoder_cache = () if use_cache else None
555
+
556
+ for idx, decoder_layer in enumerate(self.layers):
557
+ if output_hidden_states:
558
+ all_hidden_states += (hidden_states,)
559
+
560
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
561
+
562
+ if self.gradient_checkpointing and self.training:
563
+
564
+ def create_custom_forward(module):
565
+ def custom_forward(*inputs):
566
+ # None for past_key_value
567
+ return module(*inputs, output_attentions, None)
568
+
569
+ return custom_forward
570
+
571
+ layer_outputs = torch.utils.checkpoint.checkpoint(
572
+ create_custom_forward(decoder_layer),
573
+ hidden_states,
574
+ attention_mask,
575
+ position_ids,
576
+ None,
577
+ )
578
+ else:
579
+ layer_outputs = decoder_layer(
580
+ hidden_states,
581
+ attention_mask=attention_mask,
582
+ position_ids=position_ids,
583
+ past_key_value=past_key_value,
584
+ output_attentions=output_attentions,
585
+ use_cache=use_cache,
586
+ )
587
+
588
+ hidden_states = layer_outputs[0]
589
+
590
+ if use_cache:
591
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
592
+
593
+ if output_attentions:
594
+ all_self_attns += (layer_outputs[1],)
595
+
596
+ hidden_states = self.norm(hidden_states)
597
+
598
+ # add hidden states from the last decoder layer
599
+ if output_hidden_states:
600
+ all_hidden_states += (hidden_states,)
601
+
602
+ next_cache = next_decoder_cache if use_cache else None
603
+ if not return_dict:
604
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
605
+ return BaseModelOutputWithPast(
606
+ last_hidden_state=hidden_states,
607
+ past_key_values=next_cache,
608
+ hidden_states=all_hidden_states,
609
+ attentions=all_self_attns,
610
+ )
611
+
612
+
613
+ class XverseForCausalLM(XversePreTrainedModel):
614
+ def __init__(self, config):
615
+ super().__init__(config)
616
+ self.model = XverseModel(config)
617
+
618
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
619
+
620
+ # Initialize weights and apply final processing
621
+ self.post_init()
622
+
623
+ def get_input_embeddings(self):
624
+ return self.model.embed_tokens
625
+
626
+ def set_input_embeddings(self, value):
627
+ self.model.embed_tokens = value
628
+
629
+ def get_output_embeddings(self):
630
+ return self.lm_head
631
+
632
+ def set_output_embeddings(self, new_embeddings):
633
+ self.lm_head = new_embeddings
634
+
635
+ def set_decoder(self, decoder):
636
+ self.model = decoder
637
+
638
+ def get_decoder(self):
639
+ return self.model
640
+
641
+ @add_start_docstrings_to_model_forward(XVERSE_INPUTS_DOCSTRING)
642
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
643
+ def forward(
644
+ self,
645
+ input_ids: torch.LongTensor = None,
646
+ attention_mask: Optional[torch.Tensor] = None,
647
+ position_ids: Optional[torch.LongTensor] = None,
648
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
649
+ inputs_embeds: Optional[torch.FloatTensor] = None,
650
+ labels: Optional[torch.LongTensor] = None,
651
+ use_cache: Optional[bool] = None,
652
+ output_attentions: Optional[bool] = None,
653
+ output_hidden_states: Optional[bool] = None,
654
+ return_dict: Optional[bool] = None,
655
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
656
+ r"""
657
+ Args:
658
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
659
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
660
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
661
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
662
+
663
+ Returns:
664
+
665
+ Example:
666
+
667
+ ```python
668
+ >>> from transformers import AutoTokenizer, AutoModelForCausalLM
669
+
670
+ >>> model = AutoModelForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS, trust_remote_code=True)
671
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
672
+
673
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
674
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
675
+
676
+ >>> # Generate
677
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
678
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
679
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
680
+ ```"""
681
+
682
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
683
+ output_hidden_states = (
684
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
685
+ )
686
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
687
+
688
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
689
+ outputs = self.model(
690
+ input_ids=input_ids,
691
+ attention_mask=attention_mask,
692
+ position_ids=position_ids,
693
+ past_key_values=past_key_values,
694
+ inputs_embeds=inputs_embeds,
695
+ use_cache=use_cache,
696
+ output_attentions=output_attentions,
697
+ output_hidden_states=output_hidden_states,
698
+ return_dict=return_dict,
699
+ )
700
+
701
+ hidden_states = outputs[0]
702
+ logits = self.lm_head(hidden_states)
703
+
704
+ loss = None
705
+ if labels is not None:
706
+ # Shift so that tokens < n predict n
707
+ shift_logits = logits[..., :-1, :].contiguous()
708
+ shift_labels = labels[..., 1:].contiguous()
709
+ # Flatten the tokens
710
+ loss_fct = CrossEntropyLoss()
711
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
712
+ shift_labels = shift_labels.view(-1)
713
+ # Enable model parallelism
714
+ shift_labels = shift_labels.to(shift_logits.device)
715
+ loss = loss_fct(shift_logits, shift_labels)
716
+
717
+ if not return_dict:
718
+ output = (logits,) + outputs[1:]
719
+ return (loss,) + output if loss is not None else output
720
+
721
+ return CausalLMOutputWithPast(
722
+ loss=loss,
723
+ logits=logits,
724
+ past_key_values=outputs.past_key_values,
725
+ hidden_states=outputs.hidden_states,
726
+ attentions=outputs.attentions,
727
+ )
728
+
729
+ def prepare_inputs_for_generation(
730
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
731
+ ):
732
+ if past_key_values:
733
+ input_ids = input_ids[:, -1:]
734
+
735
+ position_ids = kwargs.get("position_ids", None)
736
+ if attention_mask is not None and position_ids is None:
737
+ # create position_ids on the fly for batch generation
738
+ position_ids = attention_mask.long().cumsum(-1) - 1
739
+ position_ids.masked_fill_(attention_mask == 0, 1)
740
+ if past_key_values:
741
+ position_ids = position_ids[:, -1].unsqueeze(-1)
742
+
743
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
744
+ if inputs_embeds is not None and past_key_values is None:
745
+ model_inputs = {"inputs_embeds": inputs_embeds}
746
+ else:
747
+ model_inputs = {"input_ids": input_ids}
748
+
749
+ model_inputs.update(
750
+ {
751
+ "position_ids": position_ids,
752
+ "past_key_values": past_key_values,
753
+ "use_cache": kwargs.get("use_cache"),
754
+ "attention_mask": attention_mask,
755
+ }
756
+ )
757
+ return model_inputs
758
+
759
+ @staticmethod
760
+ def _reorder_cache(past_key_values, beam_idx):
761
+ reordered_past = ()
762
+ for layer_past in past_key_values:
763
+ reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
764
+ return reordered_past
pytorch_model-00001-of-00028.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c7ae274c16568199c91f87e6ae9ae65feea1cca2e76797e6a8c7f99e97c3053
3
+ size 3803256121
pytorch_model-00002-of-00028.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0dede456768d277e08c59571e70166b5dc7e5f0cb28ef943e3a9420663a675c8
3
+ size 4857110837
pytorch_model-00003-of-00028.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2d6c6f4ddad618cda00d2c6e707972b9a932db2ef1df74bbf5c58beb5949d34
3
+ size 4857110837
pytorch_model-00004-of-00028.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62957619fa7e69456d52cba6ffef6d3c378673fcb5e73e86a3507273ce42b252
3
+ size 4857110837
pytorch_model-00005-of-00028.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c26d5155c45fe9666b0d000ac335aee0e3737e29957bf83160cf19bfe13cb8a
3
+ size 4857110837
pytorch_model-00006-of-00028.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f6d49dc4fb34532681a9e081c1eda5d135c2f75cb1aa55f1d6863bcf254bcc4
3
+ size 4857110837
pytorch_model-00007-of-00028.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c449839328d0fc73ccbeb785ec2fffa39ce0b3c30fddb0ea077056cc07816ad
3
+ size 4857110837
pytorch_model-00008-of-00028.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ddf3d27c438f540a65e476a7fce4ca0048a4a37a8c4bdc2a642ea952651c9f7
3
+ size 4857110837
pytorch_model-00009-of-00028.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0e0dea4cabadaa7ef2f854fa8c12f60c513fb819be168fc6734f61eaaaebf0e
3
+ size 4857110837
pytorch_model-00010-of-00028.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb460e11b6e9a08119b06ea1f39005f2a4d1f3d21756e44cb5e177e978f37f6f
3
+ size 4857110837
pytorch_model-00011-of-00028.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:881b43512e5260a3b7fcd270cd60237a8cd42e545dcc820454fb4992d0ea9cf1
3
+ size 4857110837
pytorch_model-00012-of-00028.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:30dbbdbd19255a1a3614ac1c3970722d49a53bc8a3aad7f1ed9a31c3af3a3fd9
3
+ size 4857110837
pytorch_model-00013-of-00028.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad51c3b7bd3de6f2cd1b37fb9d4ba5a769101d92ba529d1b2bfe1170e78c7d89
3
+ size 4857110837
pytorch_model-00014-of-00028.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fcae77e880bf1ee598c8cc9ac19efbb3e6083144d708c350df265e06c5d39896
3
+ size 4857110837
pytorch_model-00015-of-00028.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6cf5833ab96598b3103a58b8a22ea3c0f4552e79e726d08eb7e769dd196c9e3d
3
+ size 4857110837
pytorch_model-00016-of-00028.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:714955f9119058b0c8ef760d360813d13f9cecfdf11e29072e99a36c4cf2b1ce
3
+ size 4857110837
pytorch_model-00017-of-00028.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47fc66d966984a980b43452837ec68fc1378852c2dc3e22f4e6286804d5968f0
3
+ size 4857110837
pytorch_model-00018-of-00028.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:570b4ebdfb01424c6ec30a42bf9ce17593e92be0fa61e985cc37d9260055e9c5
3
+ size 4857110837
pytorch_model-00019-of-00028.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b26d3cc06a92455138bbb10965fa358710070622e65c3c54dc9ae41630ec0fb0
3
+ size 4857110837
pytorch_model-00020-of-00028.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:700ac215046823f83d0bf7b6e250f1fc6f2c2025d773a4ec0797168ee0deccb2
3
+ size 4857110837
pytorch_model-00021-of-00028.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:556b23f4c2f820df242ccfae93d4b022f33c540cd8ea2cc7cce4d30dd92fc504
3
+ size 4857110837
pytorch_model-00022-of-00028.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46066cc4a18d8dfac46b6778495b6ebee941b03d3af63c021a746fdb5b0a06b7
3
+ size 4857110837
pytorch_model-00023-of-00028.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7bb808beea151ca514e487915b7128f8c5223bef14e75994db85dd48d697790
3
+ size 4857110837
pytorch_model-00024-of-00028.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8c962aeb5566b4e42a33ac3f7c9a9e34547f4db1a00396b9a0350148ee9939b
3
+ size 4857110837
pytorch_model-00025-of-00028.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d42d0b8b8118c452bbf00601ab77d20ddddafc72216e932d21509e5b5c536f2c
3
+ size 4857110837
pytorch_model-00026-of-00028.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d701d7a5a020bcf02a0a13584427cb9e30cbf351d54c11778c0d6c18c5310d89
3
+ size 4857110837
pytorch_model-00027-of-00028.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:382dde41b3acb3f5f50da5b5a69003c591b6748e1d4148be0c4132e996290688
3
+ size 4857110837
pytorch_model-00028-of-00028.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44f1b4cadbb75417898cf4be499699910a0f3398c548789681015737ee13b3a0
3
+ size 2729461661
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,810 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 82485405696
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00028-of-00028.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00028.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00028.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00028.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00028.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00028.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00028.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00028.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00028.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00028.bin",
16
+ "model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00028.bin",
17
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00028.bin",
18
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00028.bin",
19
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00002-of-00028.bin",
20
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00002-of-00028.bin",
21
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00002-of-00028.bin",
22
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00028.bin",
23
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00028.bin",
24
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00028.bin",
25
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00028.bin",
26
+ "model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00028.bin",
27
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00028.bin",
28
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00004-of-00028.bin",
29
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00005-of-00028.bin",
30
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00005-of-00028.bin",
31
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00005-of-00028.bin",
32
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00004-of-00028.bin",
33
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00004-of-00028.bin",
34
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00004-of-00028.bin",
35
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00004-of-00028.bin",
36
+ "model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00028.bin",
37
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00004-of-00028.bin",
38
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00005-of-00028.bin",
39
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00005-of-00028.bin",
40
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00005-of-00028.bin",
41
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00005-of-00028.bin",
42
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00005-of-00028.bin",
43
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00005-of-00028.bin",
44
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00005-of-00028.bin",
45
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00005-of-00028.bin",
46
+ "model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00028.bin",
47
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00005-of-00028.bin",
48
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00005-of-00028.bin",
49
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00005-of-00028.bin",
50
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00005-of-00028.bin",
51
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00005-of-00028.bin",
52
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00005-of-00028.bin",
53
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00005-of-00028.bin",
54
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00005-of-00028.bin",
55
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00005-of-00028.bin",
56
+ "model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00028.bin",
57
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00005-of-00028.bin",
58
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00005-of-00028.bin",
59
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00006-of-00028.bin",
60
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00006-of-00028.bin",
61
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00006-of-00028.bin",
62
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00005-of-00028.bin",
63
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00005-of-00028.bin",
64
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00005-of-00028.bin",
65
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00005-of-00028.bin",
66
+ "model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00028.bin",
67
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00005-of-00028.bin",
68
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00006-of-00028.bin",
69
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00006-of-00028.bin",
70
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00006-of-00028.bin",
71
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00006-of-00028.bin",
72
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00006-of-00028.bin",
73
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00006-of-00028.bin",
74
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00006-of-00028.bin",
75
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00006-of-00028.bin",
76
+ "model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00028.bin",
77
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00006-of-00028.bin",
78
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00006-of-00028.bin",
79
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00006-of-00028.bin",
80
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00006-of-00028.bin",
81
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00006-of-00028.bin",
82
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00006-of-00028.bin",
83
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00006-of-00028.bin",
84
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00006-of-00028.bin",
85
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00006-of-00028.bin",
86
+ "model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00028.bin",
87
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00006-of-00028.bin",
88
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00006-of-00028.bin",
89
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00007-of-00028.bin",
90
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00007-of-00028.bin",
91
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00007-of-00028.bin",
92
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00006-of-00028.bin",
93
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00006-of-00028.bin",
94
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00006-of-00028.bin",
95
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00006-of-00028.bin",
96
+ "model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00028.bin",
97
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00006-of-00028.bin",
98
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00007-of-00028.bin",
99
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00007-of-00028.bin",
100
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00007-of-00028.bin",
101
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00007-of-00028.bin",
102
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00007-of-00028.bin",
103
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00007-of-00028.bin",
104
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00007-of-00028.bin",
105
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00007-of-00028.bin",
106
+ "model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00007-of-00028.bin",
107
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00007-of-00028.bin",
108
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00007-of-00028.bin",
109
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00007-of-00028.bin",
110
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00007-of-00028.bin",
111
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00007-of-00028.bin",
112
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00007-of-00028.bin",
113
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00007-of-00028.bin",
114
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00007-of-00028.bin",
115
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00007-of-00028.bin",
116
+ "model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00007-of-00028.bin",
117
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00007-of-00028.bin",
118
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00007-of-00028.bin",
119
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00008-of-00028.bin",
120
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00008-of-00028.bin",
121
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00008-of-00028.bin",
122
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00007-of-00028.bin",
123
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00007-of-00028.bin",
124
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00007-of-00028.bin",
125
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00007-of-00028.bin",
126
+ "model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00007-of-00028.bin",
127
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00007-of-00028.bin",
128
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00002-of-00028.bin",
129
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00002-of-00028.bin",
130
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00002-of-00028.bin",
131
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00002-of-00028.bin",
132
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00002-of-00028.bin",
133
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00002-of-00028.bin",
134
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00002-of-00028.bin",
135
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00002-of-00028.bin",
136
+ "model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00028.bin",
137
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00002-of-00028.bin",
138
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00008-of-00028.bin",
139
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00008-of-00028.bin",
140
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00008-of-00028.bin",
141
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00008-of-00028.bin",
142
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00008-of-00028.bin",
143
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00008-of-00028.bin",
144
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00008-of-00028.bin",
145
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00008-of-00028.bin",
146
+ "model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00008-of-00028.bin",
147
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00008-of-00028.bin",
148
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00008-of-00028.bin",
149
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00008-of-00028.bin",
150
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00008-of-00028.bin",
151
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00008-of-00028.bin",
152
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00008-of-00028.bin",
153
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00008-of-00028.bin",
154
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00008-of-00028.bin",
155
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00008-of-00028.bin",
156
+ "model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00008-of-00028.bin",
157
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00008-of-00028.bin",
158
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00008-of-00028.bin",
159
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00009-of-00028.bin",
160
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00009-of-00028.bin",
161
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00009-of-00028.bin",
162
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00008-of-00028.bin",
163
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00008-of-00028.bin",
164
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00008-of-00028.bin",
165
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00008-of-00028.bin",
166
+ "model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00008-of-00028.bin",
167
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00008-of-00028.bin",
168
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00009-of-00028.bin",
169
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00009-of-00028.bin",
170
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00009-of-00028.bin",
171
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00009-of-00028.bin",
172
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00009-of-00028.bin",
173
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00009-of-00028.bin",
174
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00009-of-00028.bin",
175
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00009-of-00028.bin",
176
+ "model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00009-of-00028.bin",
177
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00009-of-00028.bin",
178
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00009-of-00028.bin",
179
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00009-of-00028.bin",
180
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00009-of-00028.bin",
181
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00009-of-00028.bin",
182
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00009-of-00028.bin",
183
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00009-of-00028.bin",
184
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00009-of-00028.bin",
185
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00009-of-00028.bin",
186
+ "model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00009-of-00028.bin",
187
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00009-of-00028.bin",
188
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00009-of-00028.bin",
189
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00010-of-00028.bin",
190
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00010-of-00028.bin",
191
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00010-of-00028.bin",
192
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00009-of-00028.bin",
193
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00009-of-00028.bin",
194
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00009-of-00028.bin",
195
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00009-of-00028.bin",
196
+ "model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00009-of-00028.bin",
197
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00009-of-00028.bin",
198
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00010-of-00028.bin",
199
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00010-of-00028.bin",
200
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00010-of-00028.bin",
201
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00010-of-00028.bin",
202
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00010-of-00028.bin",
203
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00010-of-00028.bin",
204
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00010-of-00028.bin",
205
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00010-of-00028.bin",
206
+ "model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00010-of-00028.bin",
207
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00010-of-00028.bin",
208
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00010-of-00028.bin",
209
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00010-of-00028.bin",
210
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00010-of-00028.bin",
211
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00010-of-00028.bin",
212
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00010-of-00028.bin",
213
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00010-of-00028.bin",
214
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00010-of-00028.bin",
215
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00010-of-00028.bin",
216
+ "model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00010-of-00028.bin",
217
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00010-of-00028.bin",
218
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00010-of-00028.bin",
219
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00011-of-00028.bin",
220
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00011-of-00028.bin",
221
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00011-of-00028.bin",
222
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00010-of-00028.bin",
223
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00010-of-00028.bin",
224
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00010-of-00028.bin",
225
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00010-of-00028.bin",
226
+ "model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00010-of-00028.bin",
227
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00010-of-00028.bin",
228
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00011-of-00028.bin",
229
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00011-of-00028.bin",
230
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00011-of-00028.bin",
231
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00011-of-00028.bin",
232
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00011-of-00028.bin",
233
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00011-of-00028.bin",
234
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00011-of-00028.bin",
235
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00011-of-00028.bin",
236
+ "model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00011-of-00028.bin",
237
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00011-of-00028.bin",
238
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00002-of-00028.bin",
239
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00002-of-00028.bin",
240
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00002-of-00028.bin",
241
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00002-of-00028.bin",
242
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00002-of-00028.bin",
243
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00002-of-00028.bin",
244
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00002-of-00028.bin",
245
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00002-of-00028.bin",
246
+ "model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00028.bin",
247
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00002-of-00028.bin",
248
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00011-of-00028.bin",
249
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00011-of-00028.bin",
250
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00011-of-00028.bin",
251
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00011-of-00028.bin",
252
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00011-of-00028.bin",
253
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00011-of-00028.bin",
254
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00011-of-00028.bin",
255
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00011-of-00028.bin",
256
+ "model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00011-of-00028.bin",
257
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00011-of-00028.bin",
258
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00011-of-00028.bin",
259
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00012-of-00028.bin",
260
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00012-of-00028.bin",
261
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00012-of-00028.bin",
262
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00011-of-00028.bin",
263
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00011-of-00028.bin",
264
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00011-of-00028.bin",
265
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00011-of-00028.bin",
266
+ "model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00011-of-00028.bin",
267
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00011-of-00028.bin",
268
+ "model.layers.32.input_layernorm.weight": "pytorch_model-00012-of-00028.bin",
269
+ "model.layers.32.mlp.down_proj.weight": "pytorch_model-00012-of-00028.bin",
270
+ "model.layers.32.mlp.gate_proj.weight": "pytorch_model-00012-of-00028.bin",
271
+ "model.layers.32.mlp.up_proj.weight": "pytorch_model-00012-of-00028.bin",
272
+ "model.layers.32.post_attention_layernorm.weight": "pytorch_model-00012-of-00028.bin",
273
+ "model.layers.32.self_attn.k_proj.weight": "pytorch_model-00012-of-00028.bin",
274
+ "model.layers.32.self_attn.o_proj.weight": "pytorch_model-00012-of-00028.bin",
275
+ "model.layers.32.self_attn.q_proj.weight": "pytorch_model-00012-of-00028.bin",
276
+ "model.layers.32.self_attn.rotary_emb.inv_freq": "pytorch_model-00012-of-00028.bin",
277
+ "model.layers.32.self_attn.v_proj.weight": "pytorch_model-00012-of-00028.bin",
278
+ "model.layers.33.input_layernorm.weight": "pytorch_model-00012-of-00028.bin",
279
+ "model.layers.33.mlp.down_proj.weight": "pytorch_model-00012-of-00028.bin",
280
+ "model.layers.33.mlp.gate_proj.weight": "pytorch_model-00012-of-00028.bin",
281
+ "model.layers.33.mlp.up_proj.weight": "pytorch_model-00012-of-00028.bin",
282
+ "model.layers.33.post_attention_layernorm.weight": "pytorch_model-00012-of-00028.bin",
283
+ "model.layers.33.self_attn.k_proj.weight": "pytorch_model-00012-of-00028.bin",
284
+ "model.layers.33.self_attn.o_proj.weight": "pytorch_model-00012-of-00028.bin",
285
+ "model.layers.33.self_attn.q_proj.weight": "pytorch_model-00012-of-00028.bin",
286
+ "model.layers.33.self_attn.rotary_emb.inv_freq": "pytorch_model-00012-of-00028.bin",
287
+ "model.layers.33.self_attn.v_proj.weight": "pytorch_model-00012-of-00028.bin",
288
+ "model.layers.34.input_layernorm.weight": "pytorch_model-00012-of-00028.bin",
289
+ "model.layers.34.mlp.down_proj.weight": "pytorch_model-00013-of-00028.bin",
290
+ "model.layers.34.mlp.gate_proj.weight": "pytorch_model-00013-of-00028.bin",
291
+ "model.layers.34.mlp.up_proj.weight": "pytorch_model-00013-of-00028.bin",
292
+ "model.layers.34.post_attention_layernorm.weight": "pytorch_model-00012-of-00028.bin",
293
+ "model.layers.34.self_attn.k_proj.weight": "pytorch_model-00012-of-00028.bin",
294
+ "model.layers.34.self_attn.o_proj.weight": "pytorch_model-00012-of-00028.bin",
295
+ "model.layers.34.self_attn.q_proj.weight": "pytorch_model-00012-of-00028.bin",
296
+ "model.layers.34.self_attn.rotary_emb.inv_freq": "pytorch_model-00012-of-00028.bin",
297
+ "model.layers.34.self_attn.v_proj.weight": "pytorch_model-00012-of-00028.bin",
298
+ "model.layers.35.input_layernorm.weight": "pytorch_model-00013-of-00028.bin",
299
+ "model.layers.35.mlp.down_proj.weight": "pytorch_model-00013-of-00028.bin",
300
+ "model.layers.35.mlp.gate_proj.weight": "pytorch_model-00013-of-00028.bin",
301
+ "model.layers.35.mlp.up_proj.weight": "pytorch_model-00013-of-00028.bin",
302
+ "model.layers.35.post_attention_layernorm.weight": "pytorch_model-00013-of-00028.bin",
303
+ "model.layers.35.self_attn.k_proj.weight": "pytorch_model-00013-of-00028.bin",
304
+ "model.layers.35.self_attn.o_proj.weight": "pytorch_model-00013-of-00028.bin",
305
+ "model.layers.35.self_attn.q_proj.weight": "pytorch_model-00013-of-00028.bin",
306
+ "model.layers.35.self_attn.rotary_emb.inv_freq": "pytorch_model-00013-of-00028.bin",
307
+ "model.layers.35.self_attn.v_proj.weight": "pytorch_model-00013-of-00028.bin",
308
+ "model.layers.36.input_layernorm.weight": "pytorch_model-00013-of-00028.bin",
309
+ "model.layers.36.mlp.down_proj.weight": "pytorch_model-00013-of-00028.bin",
310
+ "model.layers.36.mlp.gate_proj.weight": "pytorch_model-00013-of-00028.bin",
311
+ "model.layers.36.mlp.up_proj.weight": "pytorch_model-00013-of-00028.bin",
312
+ "model.layers.36.post_attention_layernorm.weight": "pytorch_model-00013-of-00028.bin",
313
+ "model.layers.36.self_attn.k_proj.weight": "pytorch_model-00013-of-00028.bin",
314
+ "model.layers.36.self_attn.o_proj.weight": "pytorch_model-00013-of-00028.bin",
315
+ "model.layers.36.self_attn.q_proj.weight": "pytorch_model-00013-of-00028.bin",
316
+ "model.layers.36.self_attn.rotary_emb.inv_freq": "pytorch_model-00013-of-00028.bin",
317
+ "model.layers.36.self_attn.v_proj.weight": "pytorch_model-00013-of-00028.bin",
318
+ "model.layers.37.input_layernorm.weight": "pytorch_model-00013-of-00028.bin",
319
+ "model.layers.37.mlp.down_proj.weight": "pytorch_model-00014-of-00028.bin",
320
+ "model.layers.37.mlp.gate_proj.weight": "pytorch_model-00014-of-00028.bin",
321
+ "model.layers.37.mlp.up_proj.weight": "pytorch_model-00014-of-00028.bin",
322
+ "model.layers.37.post_attention_layernorm.weight": "pytorch_model-00013-of-00028.bin",
323
+ "model.layers.37.self_attn.k_proj.weight": "pytorch_model-00013-of-00028.bin",
324
+ "model.layers.37.self_attn.o_proj.weight": "pytorch_model-00013-of-00028.bin",
325
+ "model.layers.37.self_attn.q_proj.weight": "pytorch_model-00013-of-00028.bin",
326
+ "model.layers.37.self_attn.rotary_emb.inv_freq": "pytorch_model-00013-of-00028.bin",
327
+ "model.layers.37.self_attn.v_proj.weight": "pytorch_model-00013-of-00028.bin",
328
+ "model.layers.38.input_layernorm.weight": "pytorch_model-00014-of-00028.bin",
329
+ "model.layers.38.mlp.down_proj.weight": "pytorch_model-00014-of-00028.bin",
330
+ "model.layers.38.mlp.gate_proj.weight": "pytorch_model-00014-of-00028.bin",
331
+ "model.layers.38.mlp.up_proj.weight": "pytorch_model-00014-of-00028.bin",
332
+ "model.layers.38.post_attention_layernorm.weight": "pytorch_model-00014-of-00028.bin",
333
+ "model.layers.38.self_attn.k_proj.weight": "pytorch_model-00014-of-00028.bin",
334
+ "model.layers.38.self_attn.o_proj.weight": "pytorch_model-00014-of-00028.bin",
335
+ "model.layers.38.self_attn.q_proj.weight": "pytorch_model-00014-of-00028.bin",
336
+ "model.layers.38.self_attn.rotary_emb.inv_freq": "pytorch_model-00014-of-00028.bin",
337
+ "model.layers.38.self_attn.v_proj.weight": "pytorch_model-00014-of-00028.bin",
338
+ "model.layers.39.input_layernorm.weight": "pytorch_model-00014-of-00028.bin",
339
+ "model.layers.39.mlp.down_proj.weight": "pytorch_model-00014-of-00028.bin",
340
+ "model.layers.39.mlp.gate_proj.weight": "pytorch_model-00014-of-00028.bin",
341
+ "model.layers.39.mlp.up_proj.weight": "pytorch_model-00014-of-00028.bin",
342
+ "model.layers.39.post_attention_layernorm.weight": "pytorch_model-00014-of-00028.bin",
343
+ "model.layers.39.self_attn.k_proj.weight": "pytorch_model-00014-of-00028.bin",
344
+ "model.layers.39.self_attn.o_proj.weight": "pytorch_model-00014-of-00028.bin",
345
+ "model.layers.39.self_attn.q_proj.weight": "pytorch_model-00014-of-00028.bin",
346
+ "model.layers.39.self_attn.rotary_emb.inv_freq": "pytorch_model-00014-of-00028.bin",
347
+ "model.layers.39.self_attn.v_proj.weight": "pytorch_model-00014-of-00028.bin",
348
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00002-of-00028.bin",
349
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00003-of-00028.bin",
350
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00003-of-00028.bin",
351
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00003-of-00028.bin",
352
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00002-of-00028.bin",
353
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00002-of-00028.bin",
354
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00002-of-00028.bin",
355
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00002-of-00028.bin",
356
+ "model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00028.bin",
357
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00002-of-00028.bin",
358
+ "model.layers.40.input_layernorm.weight": "pytorch_model-00014-of-00028.bin",
359
+ "model.layers.40.mlp.down_proj.weight": "pytorch_model-00015-of-00028.bin",
360
+ "model.layers.40.mlp.gate_proj.weight": "pytorch_model-00015-of-00028.bin",
361
+ "model.layers.40.mlp.up_proj.weight": "pytorch_model-00015-of-00028.bin",
362
+ "model.layers.40.post_attention_layernorm.weight": "pytorch_model-00014-of-00028.bin",
363
+ "model.layers.40.self_attn.k_proj.weight": "pytorch_model-00014-of-00028.bin",
364
+ "model.layers.40.self_attn.o_proj.weight": "pytorch_model-00014-of-00028.bin",
365
+ "model.layers.40.self_attn.q_proj.weight": "pytorch_model-00014-of-00028.bin",
366
+ "model.layers.40.self_attn.rotary_emb.inv_freq": "pytorch_model-00014-of-00028.bin",
367
+ "model.layers.40.self_attn.v_proj.weight": "pytorch_model-00014-of-00028.bin",
368
+ "model.layers.41.input_layernorm.weight": "pytorch_model-00015-of-00028.bin",
369
+ "model.layers.41.mlp.down_proj.weight": "pytorch_model-00015-of-00028.bin",
370
+ "model.layers.41.mlp.gate_proj.weight": "pytorch_model-00015-of-00028.bin",
371
+ "model.layers.41.mlp.up_proj.weight": "pytorch_model-00015-of-00028.bin",
372
+ "model.layers.41.post_attention_layernorm.weight": "pytorch_model-00015-of-00028.bin",
373
+ "model.layers.41.self_attn.k_proj.weight": "pytorch_model-00015-of-00028.bin",
374
+ "model.layers.41.self_attn.o_proj.weight": "pytorch_model-00015-of-00028.bin",
375
+ "model.layers.41.self_attn.q_proj.weight": "pytorch_model-00015-of-00028.bin",
376
+ "model.layers.41.self_attn.rotary_emb.inv_freq": "pytorch_model-00015-of-00028.bin",
377
+ "model.layers.41.self_attn.v_proj.weight": "pytorch_model-00015-of-00028.bin",
378
+ "model.layers.42.input_layernorm.weight": "pytorch_model-00015-of-00028.bin",
379
+ "model.layers.42.mlp.down_proj.weight": "pytorch_model-00015-of-00028.bin",
380
+ "model.layers.42.mlp.gate_proj.weight": "pytorch_model-00015-of-00028.bin",
381
+ "model.layers.42.mlp.up_proj.weight": "pytorch_model-00015-of-00028.bin",
382
+ "model.layers.42.post_attention_layernorm.weight": "pytorch_model-00015-of-00028.bin",
383
+ "model.layers.42.self_attn.k_proj.weight": "pytorch_model-00015-of-00028.bin",
384
+ "model.layers.42.self_attn.o_proj.weight": "pytorch_model-00015-of-00028.bin",
385
+ "model.layers.42.self_attn.q_proj.weight": "pytorch_model-00015-of-00028.bin",
386
+ "model.layers.42.self_attn.rotary_emb.inv_freq": "pytorch_model-00015-of-00028.bin",
387
+ "model.layers.42.self_attn.v_proj.weight": "pytorch_model-00015-of-00028.bin",
388
+ "model.layers.43.input_layernorm.weight": "pytorch_model-00015-of-00028.bin",
389
+ "model.layers.43.mlp.down_proj.weight": "pytorch_model-00016-of-00028.bin",
390
+ "model.layers.43.mlp.gate_proj.weight": "pytorch_model-00016-of-00028.bin",
391
+ "model.layers.43.mlp.up_proj.weight": "pytorch_model-00016-of-00028.bin",
392
+ "model.layers.43.post_attention_layernorm.weight": "pytorch_model-00015-of-00028.bin",
393
+ "model.layers.43.self_attn.k_proj.weight": "pytorch_model-00015-of-00028.bin",
394
+ "model.layers.43.self_attn.o_proj.weight": "pytorch_model-00015-of-00028.bin",
395
+ "model.layers.43.self_attn.q_proj.weight": "pytorch_model-00015-of-00028.bin",
396
+ "model.layers.43.self_attn.rotary_emb.inv_freq": "pytorch_model-00015-of-00028.bin",
397
+ "model.layers.43.self_attn.v_proj.weight": "pytorch_model-00015-of-00028.bin",
398
+ "model.layers.44.input_layernorm.weight": "pytorch_model-00016-of-00028.bin",
399
+ "model.layers.44.mlp.down_proj.weight": "pytorch_model-00016-of-00028.bin",
400
+ "model.layers.44.mlp.gate_proj.weight": "pytorch_model-00016-of-00028.bin",
401
+ "model.layers.44.mlp.up_proj.weight": "pytorch_model-00016-of-00028.bin",
402
+ "model.layers.44.post_attention_layernorm.weight": "pytorch_model-00016-of-00028.bin",
403
+ "model.layers.44.self_attn.k_proj.weight": "pytorch_model-00016-of-00028.bin",
404
+ "model.layers.44.self_attn.o_proj.weight": "pytorch_model-00016-of-00028.bin",
405
+ "model.layers.44.self_attn.q_proj.weight": "pytorch_model-00016-of-00028.bin",
406
+ "model.layers.44.self_attn.rotary_emb.inv_freq": "pytorch_model-00016-of-00028.bin",
407
+ "model.layers.44.self_attn.v_proj.weight": "pytorch_model-00016-of-00028.bin",
408
+ "model.layers.45.input_layernorm.weight": "pytorch_model-00016-of-00028.bin",
409
+ "model.layers.45.mlp.down_proj.weight": "pytorch_model-00016-of-00028.bin",
410
+ "model.layers.45.mlp.gate_proj.weight": "pytorch_model-00016-of-00028.bin",
411
+ "model.layers.45.mlp.up_proj.weight": "pytorch_model-00016-of-00028.bin",
412
+ "model.layers.45.post_attention_layernorm.weight": "pytorch_model-00016-of-00028.bin",
413
+ "model.layers.45.self_attn.k_proj.weight": "pytorch_model-00016-of-00028.bin",
414
+ "model.layers.45.self_attn.o_proj.weight": "pytorch_model-00016-of-00028.bin",
415
+ "model.layers.45.self_attn.q_proj.weight": "pytorch_model-00016-of-00028.bin",
416
+ "model.layers.45.self_attn.rotary_emb.inv_freq": "pytorch_model-00016-of-00028.bin",
417
+ "model.layers.45.self_attn.v_proj.weight": "pytorch_model-00016-of-00028.bin",
418
+ "model.layers.46.input_layernorm.weight": "pytorch_model-00016-of-00028.bin",
419
+ "model.layers.46.mlp.down_proj.weight": "pytorch_model-00017-of-00028.bin",
420
+ "model.layers.46.mlp.gate_proj.weight": "pytorch_model-00017-of-00028.bin",
421
+ "model.layers.46.mlp.up_proj.weight": "pytorch_model-00017-of-00028.bin",
422
+ "model.layers.46.post_attention_layernorm.weight": "pytorch_model-00016-of-00028.bin",
423
+ "model.layers.46.self_attn.k_proj.weight": "pytorch_model-00016-of-00028.bin",
424
+ "model.layers.46.self_attn.o_proj.weight": "pytorch_model-00016-of-00028.bin",
425
+ "model.layers.46.self_attn.q_proj.weight": "pytorch_model-00016-of-00028.bin",
426
+ "model.layers.46.self_attn.rotary_emb.inv_freq": "pytorch_model-00016-of-00028.bin",
427
+ "model.layers.46.self_attn.v_proj.weight": "pytorch_model-00016-of-00028.bin",
428
+ "model.layers.47.input_layernorm.weight": "pytorch_model-00017-of-00028.bin",
429
+ "model.layers.47.mlp.down_proj.weight": "pytorch_model-00017-of-00028.bin",
430
+ "model.layers.47.mlp.gate_proj.weight": "pytorch_model-00017-of-00028.bin",
431
+ "model.layers.47.mlp.up_proj.weight": "pytorch_model-00017-of-00028.bin",
432
+ "model.layers.47.post_attention_layernorm.weight": "pytorch_model-00017-of-00028.bin",
433
+ "model.layers.47.self_attn.k_proj.weight": "pytorch_model-00017-of-00028.bin",
434
+ "model.layers.47.self_attn.o_proj.weight": "pytorch_model-00017-of-00028.bin",
435
+ "model.layers.47.self_attn.q_proj.weight": "pytorch_model-00017-of-00028.bin",
436
+ "model.layers.47.self_attn.rotary_emb.inv_freq": "pytorch_model-00017-of-00028.bin",
437
+ "model.layers.47.self_attn.v_proj.weight": "pytorch_model-00017-of-00028.bin",
438
+ "model.layers.48.input_layernorm.weight": "pytorch_model-00017-of-00028.bin",
439
+ "model.layers.48.mlp.down_proj.weight": "pytorch_model-00017-of-00028.bin",
440
+ "model.layers.48.mlp.gate_proj.weight": "pytorch_model-00017-of-00028.bin",
441
+ "model.layers.48.mlp.up_proj.weight": "pytorch_model-00017-of-00028.bin",
442
+ "model.layers.48.post_attention_layernorm.weight": "pytorch_model-00017-of-00028.bin",
443
+ "model.layers.48.self_attn.k_proj.weight": "pytorch_model-00017-of-00028.bin",
444
+ "model.layers.48.self_attn.o_proj.weight": "pytorch_model-00017-of-00028.bin",
445
+ "model.layers.48.self_attn.q_proj.weight": "pytorch_model-00017-of-00028.bin",
446
+ "model.layers.48.self_attn.rotary_emb.inv_freq": "pytorch_model-00017-of-00028.bin",
447
+ "model.layers.48.self_attn.v_proj.weight": "pytorch_model-00017-of-00028.bin",
448
+ "model.layers.49.input_layernorm.weight": "pytorch_model-00017-of-00028.bin",
449
+ "model.layers.49.mlp.down_proj.weight": "pytorch_model-00018-of-00028.bin",
450
+ "model.layers.49.mlp.gate_proj.weight": "pytorch_model-00018-of-00028.bin",
451
+ "model.layers.49.mlp.up_proj.weight": "pytorch_model-00018-of-00028.bin",
452
+ "model.layers.49.post_attention_layernorm.weight": "pytorch_model-00017-of-00028.bin",
453
+ "model.layers.49.self_attn.k_proj.weight": "pytorch_model-00017-of-00028.bin",
454
+ "model.layers.49.self_attn.o_proj.weight": "pytorch_model-00017-of-00028.bin",
455
+ "model.layers.49.self_attn.q_proj.weight": "pytorch_model-00017-of-00028.bin",
456
+ "model.layers.49.self_attn.rotary_emb.inv_freq": "pytorch_model-00017-of-00028.bin",
457
+ "model.layers.49.self_attn.v_proj.weight": "pytorch_model-00017-of-00028.bin",
458
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00003-of-00028.bin",
459
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00003-of-00028.bin",
460
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00003-of-00028.bin",
461
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00003-of-00028.bin",
462
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00003-of-00028.bin",
463
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00003-of-00028.bin",
464
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00003-of-00028.bin",
465
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00003-of-00028.bin",
466
+ "model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00028.bin",
467
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00003-of-00028.bin",
468
+ "model.layers.50.input_layernorm.weight": "pytorch_model-00018-of-00028.bin",
469
+ "model.layers.50.mlp.down_proj.weight": "pytorch_model-00018-of-00028.bin",
470
+ "model.layers.50.mlp.gate_proj.weight": "pytorch_model-00018-of-00028.bin",
471
+ "model.layers.50.mlp.up_proj.weight": "pytorch_model-00018-of-00028.bin",
472
+ "model.layers.50.post_attention_layernorm.weight": "pytorch_model-00018-of-00028.bin",
473
+ "model.layers.50.self_attn.k_proj.weight": "pytorch_model-00018-of-00028.bin",
474
+ "model.layers.50.self_attn.o_proj.weight": "pytorch_model-00018-of-00028.bin",
475
+ "model.layers.50.self_attn.q_proj.weight": "pytorch_model-00018-of-00028.bin",
476
+ "model.layers.50.self_attn.rotary_emb.inv_freq": "pytorch_model-00018-of-00028.bin",
477
+ "model.layers.50.self_attn.v_proj.weight": "pytorch_model-00018-of-00028.bin",
478
+ "model.layers.51.input_layernorm.weight": "pytorch_model-00018-of-00028.bin",
479
+ "model.layers.51.mlp.down_proj.weight": "pytorch_model-00018-of-00028.bin",
480
+ "model.layers.51.mlp.gate_proj.weight": "pytorch_model-00018-of-00028.bin",
481
+ "model.layers.51.mlp.up_proj.weight": "pytorch_model-00018-of-00028.bin",
482
+ "model.layers.51.post_attention_layernorm.weight": "pytorch_model-00018-of-00028.bin",
483
+ "model.layers.51.self_attn.k_proj.weight": "pytorch_model-00018-of-00028.bin",
484
+ "model.layers.51.self_attn.o_proj.weight": "pytorch_model-00018-of-00028.bin",
485
+ "model.layers.51.self_attn.q_proj.weight": "pytorch_model-00018-of-00028.bin",
486
+ "model.layers.51.self_attn.rotary_emb.inv_freq": "pytorch_model-00018-of-00028.bin",
487
+ "model.layers.51.self_attn.v_proj.weight": "pytorch_model-00018-of-00028.bin",
488
+ "model.layers.52.input_layernorm.weight": "pytorch_model-00018-of-00028.bin",
489
+ "model.layers.52.mlp.down_proj.weight": "pytorch_model-00019-of-00028.bin",
490
+ "model.layers.52.mlp.gate_proj.weight": "pytorch_model-00019-of-00028.bin",
491
+ "model.layers.52.mlp.up_proj.weight": "pytorch_model-00019-of-00028.bin",
492
+ "model.layers.52.post_attention_layernorm.weight": "pytorch_model-00018-of-00028.bin",
493
+ "model.layers.52.self_attn.k_proj.weight": "pytorch_model-00018-of-00028.bin",
494
+ "model.layers.52.self_attn.o_proj.weight": "pytorch_model-00018-of-00028.bin",
495
+ "model.layers.52.self_attn.q_proj.weight": "pytorch_model-00018-of-00028.bin",
496
+ "model.layers.52.self_attn.rotary_emb.inv_freq": "pytorch_model-00018-of-00028.bin",
497
+ "model.layers.52.self_attn.v_proj.weight": "pytorch_model-00018-of-00028.bin",
498
+ "model.layers.53.input_layernorm.weight": "pytorch_model-00019-of-00028.bin",
499
+ "model.layers.53.mlp.down_proj.weight": "pytorch_model-00019-of-00028.bin",
500
+ "model.layers.53.mlp.gate_proj.weight": "pytorch_model-00019-of-00028.bin",
501
+ "model.layers.53.mlp.up_proj.weight": "pytorch_model-00019-of-00028.bin",
502
+ "model.layers.53.post_attention_layernorm.weight": "pytorch_model-00019-of-00028.bin",
503
+ "model.layers.53.self_attn.k_proj.weight": "pytorch_model-00019-of-00028.bin",
504
+ "model.layers.53.self_attn.o_proj.weight": "pytorch_model-00019-of-00028.bin",
505
+ "model.layers.53.self_attn.q_proj.weight": "pytorch_model-00019-of-00028.bin",
506
+ "model.layers.53.self_attn.rotary_emb.inv_freq": "pytorch_model-00019-of-00028.bin",
507
+ "model.layers.53.self_attn.v_proj.weight": "pytorch_model-00019-of-00028.bin",
508
+ "model.layers.54.input_layernorm.weight": "pytorch_model-00019-of-00028.bin",
509
+ "model.layers.54.mlp.down_proj.weight": "pytorch_model-00019-of-00028.bin",
510
+ "model.layers.54.mlp.gate_proj.weight": "pytorch_model-00019-of-00028.bin",
511
+ "model.layers.54.mlp.up_proj.weight": "pytorch_model-00019-of-00028.bin",
512
+ "model.layers.54.post_attention_layernorm.weight": "pytorch_model-00019-of-00028.bin",
513
+ "model.layers.54.self_attn.k_proj.weight": "pytorch_model-00019-of-00028.bin",
514
+ "model.layers.54.self_attn.o_proj.weight": "pytorch_model-00019-of-00028.bin",
515
+ "model.layers.54.self_attn.q_proj.weight": "pytorch_model-00019-of-00028.bin",
516
+ "model.layers.54.self_attn.rotary_emb.inv_freq": "pytorch_model-00019-of-00028.bin",
517
+ "model.layers.54.self_attn.v_proj.weight": "pytorch_model-00019-of-00028.bin",
518
+ "model.layers.55.input_layernorm.weight": "pytorch_model-00019-of-00028.bin",
519
+ "model.layers.55.mlp.down_proj.weight": "pytorch_model-00020-of-00028.bin",
520
+ "model.layers.55.mlp.gate_proj.weight": "pytorch_model-00020-of-00028.bin",
521
+ "model.layers.55.mlp.up_proj.weight": "pytorch_model-00020-of-00028.bin",
522
+ "model.layers.55.post_attention_layernorm.weight": "pytorch_model-00019-of-00028.bin",
523
+ "model.layers.55.self_attn.k_proj.weight": "pytorch_model-00019-of-00028.bin",
524
+ "model.layers.55.self_attn.o_proj.weight": "pytorch_model-00019-of-00028.bin",
525
+ "model.layers.55.self_attn.q_proj.weight": "pytorch_model-00019-of-00028.bin",
526
+ "model.layers.55.self_attn.rotary_emb.inv_freq": "pytorch_model-00019-of-00028.bin",
527
+ "model.layers.55.self_attn.v_proj.weight": "pytorch_model-00019-of-00028.bin",
528
+ "model.layers.56.input_layernorm.weight": "pytorch_model-00020-of-00028.bin",
529
+ "model.layers.56.mlp.down_proj.weight": "pytorch_model-00020-of-00028.bin",
530
+ "model.layers.56.mlp.gate_proj.weight": "pytorch_model-00020-of-00028.bin",
531
+ "model.layers.56.mlp.up_proj.weight": "pytorch_model-00020-of-00028.bin",
532
+ "model.layers.56.post_attention_layernorm.weight": "pytorch_model-00020-of-00028.bin",
533
+ "model.layers.56.self_attn.k_proj.weight": "pytorch_model-00020-of-00028.bin",
534
+ "model.layers.56.self_attn.o_proj.weight": "pytorch_model-00020-of-00028.bin",
535
+ "model.layers.56.self_attn.q_proj.weight": "pytorch_model-00020-of-00028.bin",
536
+ "model.layers.56.self_attn.rotary_emb.inv_freq": "pytorch_model-00020-of-00028.bin",
537
+ "model.layers.56.self_attn.v_proj.weight": "pytorch_model-00020-of-00028.bin",
538
+ "model.layers.57.input_layernorm.weight": "pytorch_model-00020-of-00028.bin",
539
+ "model.layers.57.mlp.down_proj.weight": "pytorch_model-00020-of-00028.bin",
540
+ "model.layers.57.mlp.gate_proj.weight": "pytorch_model-00020-of-00028.bin",
541
+ "model.layers.57.mlp.up_proj.weight": "pytorch_model-00020-of-00028.bin",
542
+ "model.layers.57.post_attention_layernorm.weight": "pytorch_model-00020-of-00028.bin",
543
+ "model.layers.57.self_attn.k_proj.weight": "pytorch_model-00020-of-00028.bin",
544
+ "model.layers.57.self_attn.o_proj.weight": "pytorch_model-00020-of-00028.bin",
545
+ "model.layers.57.self_attn.q_proj.weight": "pytorch_model-00020-of-00028.bin",
546
+ "model.layers.57.self_attn.rotary_emb.inv_freq": "pytorch_model-00020-of-00028.bin",
547
+ "model.layers.57.self_attn.v_proj.weight": "pytorch_model-00020-of-00028.bin",
548
+ "model.layers.58.input_layernorm.weight": "pytorch_model-00020-of-00028.bin",
549
+ "model.layers.58.mlp.down_proj.weight": "pytorch_model-00021-of-00028.bin",
550
+ "model.layers.58.mlp.gate_proj.weight": "pytorch_model-00021-of-00028.bin",
551
+ "model.layers.58.mlp.up_proj.weight": "pytorch_model-00021-of-00028.bin",
552
+ "model.layers.58.post_attention_layernorm.weight": "pytorch_model-00020-of-00028.bin",
553
+ "model.layers.58.self_attn.k_proj.weight": "pytorch_model-00020-of-00028.bin",
554
+ "model.layers.58.self_attn.o_proj.weight": "pytorch_model-00020-of-00028.bin",
555
+ "model.layers.58.self_attn.q_proj.weight": "pytorch_model-00020-of-00028.bin",
556
+ "model.layers.58.self_attn.rotary_emb.inv_freq": "pytorch_model-00020-of-00028.bin",
557
+ "model.layers.58.self_attn.v_proj.weight": "pytorch_model-00020-of-00028.bin",
558
+ "model.layers.59.input_layernorm.weight": "pytorch_model-00021-of-00028.bin",
559
+ "model.layers.59.mlp.down_proj.weight": "pytorch_model-00021-of-00028.bin",
560
+ "model.layers.59.mlp.gate_proj.weight": "pytorch_model-00021-of-00028.bin",
561
+ "model.layers.59.mlp.up_proj.weight": "pytorch_model-00021-of-00028.bin",
562
+ "model.layers.59.post_attention_layernorm.weight": "pytorch_model-00021-of-00028.bin",
563
+ "model.layers.59.self_attn.k_proj.weight": "pytorch_model-00021-of-00028.bin",
564
+ "model.layers.59.self_attn.o_proj.weight": "pytorch_model-00021-of-00028.bin",
565
+ "model.layers.59.self_attn.q_proj.weight": "pytorch_model-00021-of-00028.bin",
566
+ "model.layers.59.self_attn.rotary_emb.inv_freq": "pytorch_model-00021-of-00028.bin",
567
+ "model.layers.59.self_attn.v_proj.weight": "pytorch_model-00021-of-00028.bin",
568
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00003-of-00028.bin",
569
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00003-of-00028.bin",
570
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00003-of-00028.bin",
571
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00003-of-00028.bin",
572
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00003-of-00028.bin",
573
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00003-of-00028.bin",
574
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00003-of-00028.bin",
575
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00003-of-00028.bin",
576
+ "model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00028.bin",
577
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00003-of-00028.bin",
578
+ "model.layers.60.input_layernorm.weight": "pytorch_model-00021-of-00028.bin",
579
+ "model.layers.60.mlp.down_proj.weight": "pytorch_model-00021-of-00028.bin",
580
+ "model.layers.60.mlp.gate_proj.weight": "pytorch_model-00021-of-00028.bin",
581
+ "model.layers.60.mlp.up_proj.weight": "pytorch_model-00021-of-00028.bin",
582
+ "model.layers.60.post_attention_layernorm.weight": "pytorch_model-00021-of-00028.bin",
583
+ "model.layers.60.self_attn.k_proj.weight": "pytorch_model-00021-of-00028.bin",
584
+ "model.layers.60.self_attn.o_proj.weight": "pytorch_model-00021-of-00028.bin",
585
+ "model.layers.60.self_attn.q_proj.weight": "pytorch_model-00021-of-00028.bin",
586
+ "model.layers.60.self_attn.rotary_emb.inv_freq": "pytorch_model-00021-of-00028.bin",
587
+ "model.layers.60.self_attn.v_proj.weight": "pytorch_model-00021-of-00028.bin",
588
+ "model.layers.61.input_layernorm.weight": "pytorch_model-00021-of-00028.bin",
589
+ "model.layers.61.mlp.down_proj.weight": "pytorch_model-00022-of-00028.bin",
590
+ "model.layers.61.mlp.gate_proj.weight": "pytorch_model-00022-of-00028.bin",
591
+ "model.layers.61.mlp.up_proj.weight": "pytorch_model-00022-of-00028.bin",
592
+ "model.layers.61.post_attention_layernorm.weight": "pytorch_model-00021-of-00028.bin",
593
+ "model.layers.61.self_attn.k_proj.weight": "pytorch_model-00021-of-00028.bin",
594
+ "model.layers.61.self_attn.o_proj.weight": "pytorch_model-00021-of-00028.bin",
595
+ "model.layers.61.self_attn.q_proj.weight": "pytorch_model-00021-of-00028.bin",
596
+ "model.layers.61.self_attn.rotary_emb.inv_freq": "pytorch_model-00021-of-00028.bin",
597
+ "model.layers.61.self_attn.v_proj.weight": "pytorch_model-00021-of-00028.bin",
598
+ "model.layers.62.input_layernorm.weight": "pytorch_model-00022-of-00028.bin",
599
+ "model.layers.62.mlp.down_proj.weight": "pytorch_model-00022-of-00028.bin",
600
+ "model.layers.62.mlp.gate_proj.weight": "pytorch_model-00022-of-00028.bin",
601
+ "model.layers.62.mlp.up_proj.weight": "pytorch_model-00022-of-00028.bin",
602
+ "model.layers.62.post_attention_layernorm.weight": "pytorch_model-00022-of-00028.bin",
603
+ "model.layers.62.self_attn.k_proj.weight": "pytorch_model-00022-of-00028.bin",
604
+ "model.layers.62.self_attn.o_proj.weight": "pytorch_model-00022-of-00028.bin",
605
+ "model.layers.62.self_attn.q_proj.weight": "pytorch_model-00022-of-00028.bin",
606
+ "model.layers.62.self_attn.rotary_emb.inv_freq": "pytorch_model-00022-of-00028.bin",
607
+ "model.layers.62.self_attn.v_proj.weight": "pytorch_model-00022-of-00028.bin",
608
+ "model.layers.63.input_layernorm.weight": "pytorch_model-00022-of-00028.bin",
609
+ "model.layers.63.mlp.down_proj.weight": "pytorch_model-00022-of-00028.bin",
610
+ "model.layers.63.mlp.gate_proj.weight": "pytorch_model-00022-of-00028.bin",
611
+ "model.layers.63.mlp.up_proj.weight": "pytorch_model-00022-of-00028.bin",
612
+ "model.layers.63.post_attention_layernorm.weight": "pytorch_model-00022-of-00028.bin",
613
+ "model.layers.63.self_attn.k_proj.weight": "pytorch_model-00022-of-00028.bin",
614
+ "model.layers.63.self_attn.o_proj.weight": "pytorch_model-00022-of-00028.bin",
615
+ "model.layers.63.self_attn.q_proj.weight": "pytorch_model-00022-of-00028.bin",
616
+ "model.layers.63.self_attn.rotary_emb.inv_freq": "pytorch_model-00022-of-00028.bin",
617
+ "model.layers.63.self_attn.v_proj.weight": "pytorch_model-00022-of-00028.bin",
618
+ "model.layers.64.input_layernorm.weight": "pytorch_model-00022-of-00028.bin",
619
+ "model.layers.64.mlp.down_proj.weight": "pytorch_model-00023-of-00028.bin",
620
+ "model.layers.64.mlp.gate_proj.weight": "pytorch_model-00023-of-00028.bin",
621
+ "model.layers.64.mlp.up_proj.weight": "pytorch_model-00023-of-00028.bin",
622
+ "model.layers.64.post_attention_layernorm.weight": "pytorch_model-00022-of-00028.bin",
623
+ "model.layers.64.self_attn.k_proj.weight": "pytorch_model-00022-of-00028.bin",
624
+ "model.layers.64.self_attn.o_proj.weight": "pytorch_model-00022-of-00028.bin",
625
+ "model.layers.64.self_attn.q_proj.weight": "pytorch_model-00022-of-00028.bin",
626
+ "model.layers.64.self_attn.rotary_emb.inv_freq": "pytorch_model-00022-of-00028.bin",
627
+ "model.layers.64.self_attn.v_proj.weight": "pytorch_model-00022-of-00028.bin",
628
+ "model.layers.65.input_layernorm.weight": "pytorch_model-00023-of-00028.bin",
629
+ "model.layers.65.mlp.down_proj.weight": "pytorch_model-00023-of-00028.bin",
630
+ "model.layers.65.mlp.gate_proj.weight": "pytorch_model-00023-of-00028.bin",
631
+ "model.layers.65.mlp.up_proj.weight": "pytorch_model-00023-of-00028.bin",
632
+ "model.layers.65.post_attention_layernorm.weight": "pytorch_model-00023-of-00028.bin",
633
+ "model.layers.65.self_attn.k_proj.weight": "pytorch_model-00023-of-00028.bin",
634
+ "model.layers.65.self_attn.o_proj.weight": "pytorch_model-00023-of-00028.bin",
635
+ "model.layers.65.self_attn.q_proj.weight": "pytorch_model-00023-of-00028.bin",
636
+ "model.layers.65.self_attn.rotary_emb.inv_freq": "pytorch_model-00023-of-00028.bin",
637
+ "model.layers.65.self_attn.v_proj.weight": "pytorch_model-00023-of-00028.bin",
638
+ "model.layers.66.input_layernorm.weight": "pytorch_model-00023-of-00028.bin",
639
+ "model.layers.66.mlp.down_proj.weight": "pytorch_model-00023-of-00028.bin",
640
+ "model.layers.66.mlp.gate_proj.weight": "pytorch_model-00023-of-00028.bin",
641
+ "model.layers.66.mlp.up_proj.weight": "pytorch_model-00023-of-00028.bin",
642
+ "model.layers.66.post_attention_layernorm.weight": "pytorch_model-00023-of-00028.bin",
643
+ "model.layers.66.self_attn.k_proj.weight": "pytorch_model-00023-of-00028.bin",
644
+ "model.layers.66.self_attn.o_proj.weight": "pytorch_model-00023-of-00028.bin",
645
+ "model.layers.66.self_attn.q_proj.weight": "pytorch_model-00023-of-00028.bin",
646
+ "model.layers.66.self_attn.rotary_emb.inv_freq": "pytorch_model-00023-of-00028.bin",
647
+ "model.layers.66.self_attn.v_proj.weight": "pytorch_model-00023-of-00028.bin",
648
+ "model.layers.67.input_layernorm.weight": "pytorch_model-00023-of-00028.bin",
649
+ "model.layers.67.mlp.down_proj.weight": "pytorch_model-00024-of-00028.bin",
650
+ "model.layers.67.mlp.gate_proj.weight": "pytorch_model-00024-of-00028.bin",
651
+ "model.layers.67.mlp.up_proj.weight": "pytorch_model-00024-of-00028.bin",
652
+ "model.layers.67.post_attention_layernorm.weight": "pytorch_model-00023-of-00028.bin",
653
+ "model.layers.67.self_attn.k_proj.weight": "pytorch_model-00023-of-00028.bin",
654
+ "model.layers.67.self_attn.o_proj.weight": "pytorch_model-00023-of-00028.bin",
655
+ "model.layers.67.self_attn.q_proj.weight": "pytorch_model-00023-of-00028.bin",
656
+ "model.layers.67.self_attn.rotary_emb.inv_freq": "pytorch_model-00023-of-00028.bin",
657
+ "model.layers.67.self_attn.v_proj.weight": "pytorch_model-00023-of-00028.bin",
658
+ "model.layers.68.input_layernorm.weight": "pytorch_model-00024-of-00028.bin",
659
+ "model.layers.68.mlp.down_proj.weight": "pytorch_model-00024-of-00028.bin",
660
+ "model.layers.68.mlp.gate_proj.weight": "pytorch_model-00024-of-00028.bin",
661
+ "model.layers.68.mlp.up_proj.weight": "pytorch_model-00024-of-00028.bin",
662
+ "model.layers.68.post_attention_layernorm.weight": "pytorch_model-00024-of-00028.bin",
663
+ "model.layers.68.self_attn.k_proj.weight": "pytorch_model-00024-of-00028.bin",
664
+ "model.layers.68.self_attn.o_proj.weight": "pytorch_model-00024-of-00028.bin",
665
+ "model.layers.68.self_attn.q_proj.weight": "pytorch_model-00024-of-00028.bin",
666
+ "model.layers.68.self_attn.rotary_emb.inv_freq": "pytorch_model-00024-of-00028.bin",
667
+ "model.layers.68.self_attn.v_proj.weight": "pytorch_model-00024-of-00028.bin",
668
+ "model.layers.69.input_layernorm.weight": "pytorch_model-00024-of-00028.bin",
669
+ "model.layers.69.mlp.down_proj.weight": "pytorch_model-00024-of-00028.bin",
670
+ "model.layers.69.mlp.gate_proj.weight": "pytorch_model-00024-of-00028.bin",
671
+ "model.layers.69.mlp.up_proj.weight": "pytorch_model-00024-of-00028.bin",
672
+ "model.layers.69.post_attention_layernorm.weight": "pytorch_model-00024-of-00028.bin",
673
+ "model.layers.69.self_attn.k_proj.weight": "pytorch_model-00024-of-00028.bin",
674
+ "model.layers.69.self_attn.o_proj.weight": "pytorch_model-00024-of-00028.bin",
675
+ "model.layers.69.self_attn.q_proj.weight": "pytorch_model-00024-of-00028.bin",
676
+ "model.layers.69.self_attn.rotary_emb.inv_freq": "pytorch_model-00024-of-00028.bin",
677
+ "model.layers.69.self_attn.v_proj.weight": "pytorch_model-00024-of-00028.bin",
678
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00003-of-00028.bin",
679
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00004-of-00028.bin",
680
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00004-of-00028.bin",
681
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00004-of-00028.bin",
682
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00003-of-00028.bin",
683
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00003-of-00028.bin",
684
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00003-of-00028.bin",
685
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00003-of-00028.bin",
686
+ "model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00028.bin",
687
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00003-of-00028.bin",
688
+ "model.layers.70.input_layernorm.weight": "pytorch_model-00024-of-00028.bin",
689
+ "model.layers.70.mlp.down_proj.weight": "pytorch_model-00025-of-00028.bin",
690
+ "model.layers.70.mlp.gate_proj.weight": "pytorch_model-00025-of-00028.bin",
691
+ "model.layers.70.mlp.up_proj.weight": "pytorch_model-00025-of-00028.bin",
692
+ "model.layers.70.post_attention_layernorm.weight": "pytorch_model-00024-of-00028.bin",
693
+ "model.layers.70.self_attn.k_proj.weight": "pytorch_model-00024-of-00028.bin",
694
+ "model.layers.70.self_attn.o_proj.weight": "pytorch_model-00024-of-00028.bin",
695
+ "model.layers.70.self_attn.q_proj.weight": "pytorch_model-00024-of-00028.bin",
696
+ "model.layers.70.self_attn.rotary_emb.inv_freq": "pytorch_model-00024-of-00028.bin",
697
+ "model.layers.70.self_attn.v_proj.weight": "pytorch_model-00024-of-00028.bin",
698
+ "model.layers.71.input_layernorm.weight": "pytorch_model-00025-of-00028.bin",
699
+ "model.layers.71.mlp.down_proj.weight": "pytorch_model-00025-of-00028.bin",
700
+ "model.layers.71.mlp.gate_proj.weight": "pytorch_model-00025-of-00028.bin",
701
+ "model.layers.71.mlp.up_proj.weight": "pytorch_model-00025-of-00028.bin",
702
+ "model.layers.71.post_attention_layernorm.weight": "pytorch_model-00025-of-00028.bin",
703
+ "model.layers.71.self_attn.k_proj.weight": "pytorch_model-00025-of-00028.bin",
704
+ "model.layers.71.self_attn.o_proj.weight": "pytorch_model-00025-of-00028.bin",
705
+ "model.layers.71.self_attn.q_proj.weight": "pytorch_model-00025-of-00028.bin",
706
+ "model.layers.71.self_attn.rotary_emb.inv_freq": "pytorch_model-00025-of-00028.bin",
707
+ "model.layers.71.self_attn.v_proj.weight": "pytorch_model-00025-of-00028.bin",
708
+ "model.layers.72.input_layernorm.weight": "pytorch_model-00025-of-00028.bin",
709
+ "model.layers.72.mlp.down_proj.weight": "pytorch_model-00025-of-00028.bin",
710
+ "model.layers.72.mlp.gate_proj.weight": "pytorch_model-00025-of-00028.bin",
711
+ "model.layers.72.mlp.up_proj.weight": "pytorch_model-00025-of-00028.bin",
712
+ "model.layers.72.post_attention_layernorm.weight": "pytorch_model-00025-of-00028.bin",
713
+ "model.layers.72.self_attn.k_proj.weight": "pytorch_model-00025-of-00028.bin",
714
+ "model.layers.72.self_attn.o_proj.weight": "pytorch_model-00025-of-00028.bin",
715
+ "model.layers.72.self_attn.q_proj.weight": "pytorch_model-00025-of-00028.bin",
716
+ "model.layers.72.self_attn.rotary_emb.inv_freq": "pytorch_model-00025-of-00028.bin",
717
+ "model.layers.72.self_attn.v_proj.weight": "pytorch_model-00025-of-00028.bin",
718
+ "model.layers.73.input_layernorm.weight": "pytorch_model-00025-of-00028.bin",
719
+ "model.layers.73.mlp.down_proj.weight": "pytorch_model-00026-of-00028.bin",
720
+ "model.layers.73.mlp.gate_proj.weight": "pytorch_model-00026-of-00028.bin",
721
+ "model.layers.73.mlp.up_proj.weight": "pytorch_model-00026-of-00028.bin",
722
+ "model.layers.73.post_attention_layernorm.weight": "pytorch_model-00025-of-00028.bin",
723
+ "model.layers.73.self_attn.k_proj.weight": "pytorch_model-00025-of-00028.bin",
724
+ "model.layers.73.self_attn.o_proj.weight": "pytorch_model-00025-of-00028.bin",
725
+ "model.layers.73.self_attn.q_proj.weight": "pytorch_model-00025-of-00028.bin",
726
+ "model.layers.73.self_attn.rotary_emb.inv_freq": "pytorch_model-00025-of-00028.bin",
727
+ "model.layers.73.self_attn.v_proj.weight": "pytorch_model-00025-of-00028.bin",
728
+ "model.layers.74.input_layernorm.weight": "pytorch_model-00026-of-00028.bin",
729
+ "model.layers.74.mlp.down_proj.weight": "pytorch_model-00026-of-00028.bin",
730
+ "model.layers.74.mlp.gate_proj.weight": "pytorch_model-00026-of-00028.bin",
731
+ "model.layers.74.mlp.up_proj.weight": "pytorch_model-00026-of-00028.bin",
732
+ "model.layers.74.post_attention_layernorm.weight": "pytorch_model-00026-of-00028.bin",
733
+ "model.layers.74.self_attn.k_proj.weight": "pytorch_model-00026-of-00028.bin",
734
+ "model.layers.74.self_attn.o_proj.weight": "pytorch_model-00026-of-00028.bin",
735
+ "model.layers.74.self_attn.q_proj.weight": "pytorch_model-00026-of-00028.bin",
736
+ "model.layers.74.self_attn.rotary_emb.inv_freq": "pytorch_model-00026-of-00028.bin",
737
+ "model.layers.74.self_attn.v_proj.weight": "pytorch_model-00026-of-00028.bin",
738
+ "model.layers.75.input_layernorm.weight": "pytorch_model-00026-of-00028.bin",
739
+ "model.layers.75.mlp.down_proj.weight": "pytorch_model-00026-of-00028.bin",
740
+ "model.layers.75.mlp.gate_proj.weight": "pytorch_model-00026-of-00028.bin",
741
+ "model.layers.75.mlp.up_proj.weight": "pytorch_model-00026-of-00028.bin",
742
+ "model.layers.75.post_attention_layernorm.weight": "pytorch_model-00026-of-00028.bin",
743
+ "model.layers.75.self_attn.k_proj.weight": "pytorch_model-00026-of-00028.bin",
744
+ "model.layers.75.self_attn.o_proj.weight": "pytorch_model-00026-of-00028.bin",
745
+ "model.layers.75.self_attn.q_proj.weight": "pytorch_model-00026-of-00028.bin",
746
+ "model.layers.75.self_attn.rotary_emb.inv_freq": "pytorch_model-00026-of-00028.bin",
747
+ "model.layers.75.self_attn.v_proj.weight": "pytorch_model-00026-of-00028.bin",
748
+ "model.layers.76.input_layernorm.weight": "pytorch_model-00026-of-00028.bin",
749
+ "model.layers.76.mlp.down_proj.weight": "pytorch_model-00027-of-00028.bin",
750
+ "model.layers.76.mlp.gate_proj.weight": "pytorch_model-00027-of-00028.bin",
751
+ "model.layers.76.mlp.up_proj.weight": "pytorch_model-00027-of-00028.bin",
752
+ "model.layers.76.post_attention_layernorm.weight": "pytorch_model-00026-of-00028.bin",
753
+ "model.layers.76.self_attn.k_proj.weight": "pytorch_model-00026-of-00028.bin",
754
+ "model.layers.76.self_attn.o_proj.weight": "pytorch_model-00026-of-00028.bin",
755
+ "model.layers.76.self_attn.q_proj.weight": "pytorch_model-00026-of-00028.bin",
756
+ "model.layers.76.self_attn.rotary_emb.inv_freq": "pytorch_model-00026-of-00028.bin",
757
+ "model.layers.76.self_attn.v_proj.weight": "pytorch_model-00026-of-00028.bin",
758
+ "model.layers.77.input_layernorm.weight": "pytorch_model-00027-of-00028.bin",
759
+ "model.layers.77.mlp.down_proj.weight": "pytorch_model-00027-of-00028.bin",
760
+ "model.layers.77.mlp.gate_proj.weight": "pytorch_model-00027-of-00028.bin",
761
+ "model.layers.77.mlp.up_proj.weight": "pytorch_model-00027-of-00028.bin",
762
+ "model.layers.77.post_attention_layernorm.weight": "pytorch_model-00027-of-00028.bin",
763
+ "model.layers.77.self_attn.k_proj.weight": "pytorch_model-00027-of-00028.bin",
764
+ "model.layers.77.self_attn.o_proj.weight": "pytorch_model-00027-of-00028.bin",
765
+ "model.layers.77.self_attn.q_proj.weight": "pytorch_model-00027-of-00028.bin",
766
+ "model.layers.77.self_attn.rotary_emb.inv_freq": "pytorch_model-00027-of-00028.bin",
767
+ "model.layers.77.self_attn.v_proj.weight": "pytorch_model-00027-of-00028.bin",
768
+ "model.layers.78.input_layernorm.weight": "pytorch_model-00027-of-00028.bin",
769
+ "model.layers.78.mlp.down_proj.weight": "pytorch_model-00027-of-00028.bin",
770
+ "model.layers.78.mlp.gate_proj.weight": "pytorch_model-00027-of-00028.bin",
771
+ "model.layers.78.mlp.up_proj.weight": "pytorch_model-00027-of-00028.bin",
772
+ "model.layers.78.post_attention_layernorm.weight": "pytorch_model-00027-of-00028.bin",
773
+ "model.layers.78.self_attn.k_proj.weight": "pytorch_model-00027-of-00028.bin",
774
+ "model.layers.78.self_attn.o_proj.weight": "pytorch_model-00027-of-00028.bin",
775
+ "model.layers.78.self_attn.q_proj.weight": "pytorch_model-00027-of-00028.bin",
776
+ "model.layers.78.self_attn.rotary_emb.inv_freq": "pytorch_model-00027-of-00028.bin",
777
+ "model.layers.78.self_attn.v_proj.weight": "pytorch_model-00027-of-00028.bin",
778
+ "model.layers.79.input_layernorm.weight": "pytorch_model-00027-of-00028.bin",
779
+ "model.layers.79.mlp.down_proj.weight": "pytorch_model-00028-of-00028.bin",
780
+ "model.layers.79.mlp.gate_proj.weight": "pytorch_model-00028-of-00028.bin",
781
+ "model.layers.79.mlp.up_proj.weight": "pytorch_model-00028-of-00028.bin",
782
+ "model.layers.79.post_attention_layernorm.weight": "pytorch_model-00027-of-00028.bin",
783
+ "model.layers.79.self_attn.k_proj.weight": "pytorch_model-00027-of-00028.bin",
784
+ "model.layers.79.self_attn.o_proj.weight": "pytorch_model-00027-of-00028.bin",
785
+ "model.layers.79.self_attn.q_proj.weight": "pytorch_model-00027-of-00028.bin",
786
+ "model.layers.79.self_attn.rotary_emb.inv_freq": "pytorch_model-00027-of-00028.bin",
787
+ "model.layers.79.self_attn.v_proj.weight": "pytorch_model-00027-of-00028.bin",
788
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00004-of-00028.bin",
789
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00004-of-00028.bin",
790
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00004-of-00028.bin",
791
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00004-of-00028.bin",
792
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00004-of-00028.bin",
793
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00004-of-00028.bin",
794
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00004-of-00028.bin",
795
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00004-of-00028.bin",
796
+ "model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00028.bin",
797
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00004-of-00028.bin",
798
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00004-of-00028.bin",
799
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00004-of-00028.bin",
800
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00004-of-00028.bin",
801
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00004-of-00028.bin",
802
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00004-of-00028.bin",
803
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00004-of-00028.bin",
804
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00004-of-00028.bin",
805
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00004-of-00028.bin",
806
+ "model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00028.bin",
807
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00004-of-00028.bin",
808
+ "model.norm.weight": "pytorch_model-00028-of-00028.bin"
809
+ }
810
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|startoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<pad>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "clean_up_tokenization_spaces": true,
3
+ "model_max_length": 1000000000000000019884624838656,
4
+ "tokenizer_class": "PreTrainedTokenizerFast"
5
+ }