metadata
license: mit
base_model: microsoft/deberta-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: deberta-base-DIALOCONAN-WIKI-CLS
results: []
deberta-base-DIALOCONAN-WIKI-CLS
This model is a fine-tuned version of microsoft/deberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3866
- Precision: 0.6323
- Recall: 0.6344
- F1: 0.6333
- Accuracy: 0.9484
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.3835 | 1.0 | 2500 | 0.4185 | 0.6829 | 0.6859 | 0.6832 | 0.9097 |
0.2718 | 2.0 | 5000 | 0.3822 | 0.7011 | 0.7016 | 0.7011 | 0.9329 |
0.1602 | 3.0 | 7500 | 0.3330 | 0.6302 | 0.6321 | 0.6311 | 0.9451 |
0.1018 | 4.0 | 10000 | 0.3639 | 0.6332 | 0.6351 | 0.6340 | 0.9496 |
0.0508 | 5.0 | 12500 | 0.3866 | 0.6323 | 0.6344 | 0.6333 | 0.9484 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1