metadata
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: trained_FM_plus_minus_finetuned-finetuned
results: []
trained_FM_plus_minus_finetuned-finetuned
This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0008
- Accuracy: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 6750
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.0201 | 0.0201 | 136 | 0.4265 | 0.8900 |
0.0655 | 1.0201 | 272 | 0.0014 | 1.0 |
0.0262 | 2.0201 | 408 | 1.2800 | 0.8034 |
0.045 | 3.0201 | 544 | 0.5063 | 0.9224 |
0.0027 | 4.0201 | 680 | 0.6001 | 0.9056 |
0.0475 | 5.0201 | 816 | 0.4429 | 0.9056 |
0.0512 | 6.0201 | 952 | 0.0526 | 0.9702 |
0.0005 | 7.0201 | 1088 | 0.8258 | 0.8978 |
0.001 | 8.0201 | 1224 | 0.9702 | 0.8978 |
0.0364 | 9.0201 | 1360 | 0.8333 | 0.8978 |
0.0335 | 10.0201 | 1496 | 0.4587 | 0.8978 |
0.0433 | 11.0201 | 1632 | 0.3666 | 0.9120 |
0.0015 | 12.0201 | 1768 | 0.8214 | 0.8978 |
0.0212 | 13.0201 | 1904 | 0.4954 | 0.9030 |
0.024 | 14.0201 | 2040 | 0.5142 | 0.9043 |
0.0029 | 15.0201 | 2176 | 0.7126 | 0.9030 |
0.039 | 16.0201 | 2312 | 0.9752 | 0.8978 |
0.0284 | 17.0201 | 2448 | 0.8832 | 0.8978 |
0.0007 | 18.0201 | 2584 | 1.0282 | 0.8978 |
0.0004 | 19.0201 | 2720 | 0.0305 | 0.9819 |
0.0293 | 20.0201 | 2856 | 0.7992 | 0.9017 |
0.0002 | 21.0201 | 2992 | 0.3760 | 0.9508 |
0.0006 | 22.0201 | 3128 | 0.3892 | 0.9107 |
0.0005 | 23.0201 | 3264 | 0.5964 | 0.9030 |
0.0338 | 24.0201 | 3400 | 0.1783 | 0.9431 |
0.0006 | 25.0201 | 3536 | 0.1233 | 0.9521 |
0.0135 | 26.0201 | 3672 | 0.4995 | 0.8978 |
0.0005 | 27.0201 | 3808 | 0.8097 | 0.8978 |
0.0446 | 28.0201 | 3944 | 0.9635 | 0.8978 |
0.001 | 29.0201 | 4080 | 0.8746 | 0.8978 |
0.0252 | 30.0201 | 4216 | 0.9896 | 0.8978 |
0.0002 | 31.0201 | 4352 | 0.9572 | 0.8978 |
0.0204 | 32.0201 | 4488 | 0.9263 | 0.8978 |
0.0365 | 33.0201 | 4624 | 0.1628 | 0.9379 |
0.0037 | 34.0201 | 4760 | 0.3472 | 0.9030 |
0.0004 | 35.0201 | 4896 | 0.0515 | 0.9702 |
0.0371 | 36.0201 | 5032 | 0.8920 | 0.8978 |
0.0002 | 37.0201 | 5168 | 0.5903 | 0.8978 |
0.0004 | 38.0201 | 5304 | 0.7191 | 0.8978 |
0.0004 | 39.0201 | 5440 | 0.7647 | 0.8978 |
0.0002 | 40.0201 | 5576 | 0.8480 | 0.8978 |
0.0001 | 41.0201 | 5712 | 0.9607 | 0.8978 |
0.0003 | 42.0201 | 5848 | 0.9465 | 0.8978 |
0.0002 | 43.0201 | 5984 | 0.9669 | 0.8978 |
0.0002 | 44.0201 | 6120 | 0.9628 | 0.8978 |
0.0003 | 45.0201 | 6256 | 0.9807 | 0.8978 |
0.0 | 46.0201 | 6392 | 0.9692 | 0.8978 |
0.0257 | 47.0201 | 6528 | 0.9883 | 0.8978 |
0.0001 | 48.0201 | 6664 | 0.9766 | 0.8978 |
0.0001 | 49.0127 | 6750 | 0.9790 | 0.8978 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1