deepspeed / src /arguments.py
xingzhikb's picture
init
002bd9b
import logging
import os
import os.path as osp
import socket
import sys
from dataclasses import dataclass, field
from typing import Optional, List, Any, Tuple, Dict
import datasets
import torch # noqa
import transformers
from hydra.core.config_store import ConfigStore
from omegaconf import DictConfig, OmegaConf
from transformers import Seq2SeqTrainingArguments, TrainingArguments
logger = logging.getLogger(__name__)
@dataclass
class SCATrainingArguments(TrainingArguments):
report_to: Any = field(
default="none"
) # THIS MUST BE NONE. Use wandb args to control logging. Otherwise, the logs are not controllable.
remove_unused_columns: bool = field(default=False)
# the eval batch size must be 1, since we cannot batchify
# different number of masks per sample during eval
per_device_eval_batch_size: int = field(default=1)
# use manually constructed `labels`; without using `label` or `label_ids`
label_names: List[str] = field(default_factory=lambda: ["labels"])
# to freely generete captions without conditioning on the gt captions
predict_with_generate: bool = field(default=True)
# Set log_level to `info`. By default, it is `warning`.
# debug - 10; info - 20; warning - 30; error - 40; critical - 50;
# by default, it is `passive` which is 30.
log_level: str = field(default="info")
# NOTE(xiaoke): here list the custom arguments
num_masks_per_sample: Optional[int] = field(default=None)
# https://huggingface.co/docs/transformers/run_scripts#test-a-script
max_train_samples: Optional[int] = field(default=None)
max_eval_samples: Optional[int] = field(default=None)
max_predict_samples: Optional[int] = field(default=None)
# external log dir, used in amulet
output_log_dir: Optional[str] = field(default=None)
# inference and save the generated captions
do_inference: bool = field(default=False)
# Fist evalute before training, from Keras
evaluate_before_train: bool = field(default=False)
# Config the trainable parameters
trainable_params: Optional[List[str]] = field(default=None)
custom_param_lrs: Dict[str, float] = field(
default_factory=lambda: dict(),
metadata={
"help": "custom param lrs, prefix: lr, e.g., language_model, prefix: lr, e.g., +training.custom_param_lrs='{language_model:0.1}'"
},
)
# Evaluate with metric computation beyond only loss
compute_metrics: Optional[bool] = field(default=None)
# Apply large-scale jittering and random flip augmentations for training
# NOTE: To support multiple level of config override. Check `src/conf/conf.yaml` and `src/arguments.py:SCASeq2SeqTrainingArguments`
# https://github.com/facebookresearch/tava/blob/a9576801e81aebcf242588be39315e27f915894e/configs/nerf_dyn.yaml#L61C10-L61C10c
data_transforms: Optional[Any] = field(default=None)
# Apply instrutions in the data collator.
# NOTE: To support multiple level of config override. Check `src/conf/conf.yaml` and `src/arguments.py:SCASeq2SeqTrainingArguments`
# https://github.com/facebookresearch/tava/blob/a9576801e81aebcf242588be39315e27f915894e/configs/nerf_dyn.yaml#L61C10-L61C10c
data_collator: Optional[Any] = field(default=None)
# Save strategies
# NOTE: by default, we save two checkpoint, one for best, the other for last
# ref: https://github.com/huggingface/transformers/issues/19041#issuecomment-1248056494
load_best_model_at_end: bool = field(default=True)
# NOTE: you may also need to change: metric_for_best_model
save_total_limit: int = field(default=2)
save_save_strategy: str = field(default="steps")
evaluation_strategy: str = field(default="steps")
# NOTE: chunk inference to reduce memory usage
generate_chunk_size: Optional[int] = field(default=None)
# NOTE: Ablate prompt types on VG.
prompt_types_to_ablate_on_vg: Optional[str] = field(
default=None
) # e.g., "certer_point_in_box, random_point_in_box, random_point_in_mask"
_run_post_init: bool = field(default=False)
def __post_init__(self):
# Don't run post-init until ready to convert to TrainingArgs
# to avoid `_n_gpu` which is not exists in `Trainer` arguments
# and type check by OmegaConf
if self.report_to != "none":
raise ValueError(f"report_to must be None, got {self.report_to}")
if self.label_smoothing_factor != 0:
raise ValueError(
f"label_smoothing_factor must be 0 as the first output of the model is not language model logits, got {self.label_smoothing_factor}"
)
if self._run_post_init:
if self.per_device_eval_batch_size != 1:
raise ValueError(
"per_device_eval_batch_size must be 1, "
"since we cannot batchify different "
"number of masks per sample during eval."
)
super().__post_init__()
@dataclass
class _Seq2SeqTrainingArguments(Seq2SeqTrainingArguments):
# OmegaConf doesn't support Union, so we need to use Any
# version 4.32.0
debug: Any
fsdp: Any
# version 4.30.2
generation_config: Any
# version 4.36.2
neftune_noise_alpha: Any = None
sharded_ddp: Any = "" # Removed in 4.36.2
@dataclass
class SCASeq2SeqTrainingArguments(SCATrainingArguments, _Seq2SeqTrainingArguments):
pass
@dataclass
class ModelArguments:
model_max_length: int = field(default=20)
cache_dir: str = field(default=".model.cache")
@dataclass
class SAMCaptionerModelArguments(ModelArguments):
sam_model_name_or_path: str = field(default="facebook/sam-vit-huge")
captioner_model_name_or_path: str = field(default="Salesforce/blip-image-captioning-base")
dtype: str = field(default="float16")
use_vcot: bool = field(default=False)
@dataclass
class SCAModelBaseArguments(ModelArguments):
model_name_or_path: Optional[str] = field(default=None)
sam_model_name_or_path: str = field(default="facebook/sam-vit-huge")
lm_head_model_name_or_path: str = field(default="gpt2")
additional_num_hidden_layers: int = field(default=2)
@dataclass
class SCAModelArguments(SCAModelBaseArguments):
num_caption_tokens: int = field(default=1)
@dataclass
class SCADirectDecodingModelArguments(SCAModelBaseArguments):
pass
@dataclass
class SCAMultitaskModelArguments(SCAModelBaseArguments):
num_caption_tokens: int = field(default=1)
num_task_tokens: int = field(default=6)
@dataclass
class ScaMultitaskV2ModelArguments(SCAModelBaseArguments):
num_caption_tokens: int = field(default=1)
num_task_tokens: int = field(default=6)
num_caption_heads: int = field(default=1)
@dataclass
class SCAMultitaskSplitMixerModelArguments(SCAModelBaseArguments):
num_caption_tokens: int = field(default=1)
num_task_tokens: int = field(default=6)
num_caption_heads: int = field(default=1)
@dataclass
class SCADirectDecodingV2ModelArguments(SCAModelBaseArguments):
num_task_tokens: int = field(default=6)
@dataclass
class SCAMultitaskROIPoolModelArguments(SCAModelBaseArguments):
num_task_tokens: int = field(default=6)
vl_projector_type: str = field(default="linear")
vl_projector_norm_type: str = field(default="none")
@dataclass
class ScaTimmMultitaskV2ModelArguments(SCAModelBaseArguments):
timm_vision_name: str = field(default="vit_base_patch16_clip_224.openai")
num_caption_tokens: int = field(default=1)
num_task_tokens: int = field(default=6)
num_caption_heads: int = field(default=1)
@dataclass
class DataArguments:
_target_: str = "datasets.load_dataset"
path: Optional[str] = field(default=None)
name: Optional[str] = field(default=None)
split: Optional[str] = field(default=None)
cache_dir: str = field(default=".data.cache")
streaming: bool = field(default=False)
@dataclass
class VGDenseCapDataArgument(DataArguments):
path: str = field(default=osp.join(osp.dirname(__file__), "data", "data_scripts", "visual_genome.py"))
name: str = "region_descriptions_v1.2.0"
base_image_url: Optional[str] = field(default=None)
base_annotation_url: Optional[str] = field(default=None)
sas_key: Optional[str] = field(default=None)
use_densecap_splits: bool = field(default=True)
with_image: bool = field(default=True)
def __post_init__(self):
if self.base_image_url is None:
raise ValueError(
"base_image_url must be specified in VGDenseCapDataArgument, since VisualGenome is not public available."
)
if self.base_annotation_url is None:
raise ValueError(
"base_annotation_url must be specified in VGDenseCapDataArgument, since VisualGenome is not public available."
)
if self.sas_key is None:
logger.warning("sas_key maybe be specified in VGDenseCapDataArgument, since we fetch data from Azure.")
@dataclass
class VGDenseCapLocalDataArgument(DataArguments):
path: str = field(
default=osp.join(osp.dirname(__file__), "data", "data_scripts", "visual_genome-densecap-local.py")
)
name: str = "densecap"
with_image: bool = field(default=True)
base_dir: Optional[str] = field(default=None)
base_annotation_dir: Optional[str] = field(default=None)
@dataclass
class VGGRiTLocalDataArgument(DataArguments):
path: str = field(default=osp.join(osp.dirname(__file__), "data", "data_scripts", "visual_genome-grit-local.py"))
name: str = "grit"
with_image: bool = field(default=True)
base_dir: Optional[str] = field(default=None)
base_annotation_dir: Optional[str] = field(default=None)
@dataclass
class RefCOCODataArgument(DataArguments):
path: str = field(default=osp.join(osp.dirname(__file__), "data", "data_scripts", "refcoco.py"))
name: str = "refcoco-unc"
base_url: Optional[str] = field(default=None)
sas_key: Optional[str] = field(default=None)
with_image: bool = field(default=True)
with_mask: bool = field(
default=False
) # To align with default vg-densecap-region_descriptions, which has no mask. Therefore we can concatenate them smoothly.
@dataclass
class SA1BCapDataArgument(DataArguments):
path: str = field(default=osp.join(osp.dirname(__file__), "data", "data_scripts", "sa1b_cap.py"))
name: str = "mask_region_descriptions_v0.0.1"
sa1b_tar_url: Optional[str] = field(default=None)
sa1b_tar_template: Optional[str] = field(default=None)
sa1b_annot_tsv_url: Optional[str] = field(default=None)
sa1b_annot_template: Optional[str] = field(default=None)
sa1b_cap_tsv_url: Optional[str] = field(default=None)
sa1b_cap_template: Optional[str] = field(default=None)
sa1b_filter_tsv_url: Optional[str] = field(default=None)
sa1b_filter_template: Optional[str] = field(default=None)
sa1b_file_range: Optional[str] = field(
default=None,
metadata={
"help": "We use `ast.literal_eval` to parse the Python object. We assume it is a list of int or a `range` object."
},
)
with_image: bool = field(default=True)
with_mask: bool = field(
default=False
) # To align with default vg-densecap-region_descriptions, which has no mask. Therefore we can concatenate them smoothly.
@dataclass
class COCOInstanceDataArgument(DataArguments):
path: str = field(default=osp.join(osp.dirname(__file__), "data", "data_scripts", "coco_instance.py"))
name: str = "2017"
coco_zip_url: Optional[str] = field(default=None)
coco_annotations_zip_url: Optional[str] = field(default=None)
with_image: bool = field(default=True)
with_mask: bool = field(
default=False
) # To align with default vg-densecap-region_descriptions, which has no mask. Therefore we can concatenate them smoothly.
task_type: str = field(default="recognition")
@dataclass
class COCOInstanceLocalDataArgument(COCOInstanceDataArgument):
path: str = field(default=osp.join(osp.dirname(__file__), "data", "data_scripts", "coco_instance-local.py"))
@dataclass
class Objects365LocalDataArgument(DataArguments):
path: str = field(default=osp.join(osp.dirname(__file__), "data", "data_scripts", "objects365-local.py"))
name: str = "v2"
objects365_base_dir: Optional[str] = field(default=None)
objects365_base_annotations_dir: Optional[str] = field(default=None)
with_image: bool = field(default=True)
with_mask: bool = field(
default=False
) # To align with default vg-densecap-region_descriptions, which has no mask. Therefore we can concatenate them smoothly.
task_type: str = field(default="recognition")
@dataclass
class V3DetLocalDataArgument(DataArguments):
path: str = field(default=osp.join(osp.dirname(__file__), "data", "data_scripts", "v3det-local.py"))
name: str = "v1"
v3det_base_dir: Optional[str] = field(default=None)
v3det_base_annotations_dir: Optional[str] = field(default=None)
with_image: bool = field(default=True)
with_mask: bool = field(
default=False
) # To align with default vg-densecap-region_descriptions, which has no mask. Therefore we can concatenate them smoothly.
task_type: str = field(default="recognition")
@dataclass
class SBUPseudoRegionDataArgument(DataArguments):
path: str = field(default=osp.join(osp.dirname(__file__), "data", "data_scripts", "sbu-pseudo_region.py"))
name: str = "pseudo_region"
base_dir: Optional[str] = field(default=None)
base_annotations_dir: Optional[str] = field(default=None)
with_image: bool = field(default=True)
with_mask: bool = field(default=False) # NOTE: we don't have mask for sbu
@dataclass
class SBUPseudoRegionLocalDataArgument(SBUPseudoRegionDataArgument):
path: str = field(default=osp.join(osp.dirname(__file__), "data", "data_scripts", "sbu-pseudo_region-local.py"))
@dataclass
class COCOCaptionPseudoRegion(DataArguments):
path: str = field(default=osp.join(osp.dirname(__file__), "data", "data_scripts", "coco_caption-pseudo_region.py"))
name: str = "2017"
coco_zip_url: Optional[str] = field(default=None)
coco_annotations_zip_url: Optional[str] = field(default=None)
with_image: bool = field(default=True)
with_mask: bool = field(default=False) # NOTE: we don't have mask for sbu
@dataclass
class WandbArguments:
log: bool = field(default=True)
project: Optional[str] = field(default="sca", metadata={"help": "wandb project"})
group: Optional[str] = field(default="debug", metadata={"help": "wandb group"})
name: Optional[str] = field(default="run", metadata={"help": "wandb run name"})
tags: Optional[List[str]] = field(default=None, metadata={"help": "wandb tags"})
resume: str = field(default="allow", metadata={"help": "wandb resume strategy"})
id: Optional[str] = field(default=None, metadata={"help": "wandb run id"})
@dataclass
class DataTransformsArguments:
"""
NOTE: used to control large-scale jittering data augmentation.
"""
min_scale: float = 0.1
max_scale: float = 2.0
image_size: int = 1024
@dataclass
class DataCollatorClass:
use_instruction: bool = field(default=False)
# NOTE: We have two kinds of tasks so far: `captioning` and `recognition`.
instruction_mapping_json: Optional[str] = field(default=None)
# NOTE: Useless, since all the node are initialized the same as `base_*`.
defaults = [{"wandb": "base_wandb"}]
@dataclass
class M3D2DLocalDataArgument(DataArguments):
path: str = field(default=osp.join(osp.dirname(__file__), "data", "data_scripts", "m3d_2d.py"))
name: str = "custom"
data_dir: Optional[str] = field(default=None)
with_image: bool = field(default=True)
task_type: str = field(default="recognition")
@dataclass
class Arguments:
defaults: List[Any] = field(default_factory=lambda: defaults)
training: SCASeq2SeqTrainingArguments = field(default_factory=lambda: SCASeq2SeqTrainingArguments(output_dir="?"))
# NOTE(xiaoke): to only maintain one sort of data config, we use soft links to link the data config to the train/eval config separately.
# NOTE(xiaoke): Should be Union[List[DataArguments], DataArguments], while OmegaConf doesn't support Union. So use str to compose the configs dynamically.
# NOTE(xiaoke): So we cannot override the args in the config file, since it will be converted to str.
train_data: List[str] = field(default_factory=list)
train_data_interleave_probabilities: Optional[List[float]] = field(default=None)
train_data_overrides: List[str] = field(
default_factory=list,
metadata={"help": "overrides for train data. \"train_data_overrides='[data.with_image\=False]'\""},
)
eval_data: List[str] = field(default_factory=list)
eval_data_overrides: List[str] = field(
default_factory=list,
metadata={"help": "overrides for eval data. \"eval_data_overrides='[data.with_image\=False]'\""},
)
model: ModelArguments = field(default_factory=ModelArguments)
wandb: WandbArguments = field(default_factory=WandbArguments)
# NOTE: To support multiple level of config override. Check `src/conf/conf.yaml` and `src/arguments.py:SCASeq2SeqTrainingArguments`
# https://github.com/facebookresearch/tava/blob/a9576801e81aebcf242588be39315e27f915894e/configs/nerf_dyn.yaml#L61C10-L61C10c
data_transforms: Optional[DataTransformsArguments] = field(default=None)
# NOTE: To support multiple level of config override. Check `src/conf/conf.yaml` and `src/arguments.py:SCASeq2SeqTrainingArguments`
# https://github.com/facebookresearch/tava/blob/a9576801e81aebcf242588be39315e27f915894e/configs/nerf_dyn.yaml#L61C10-L61C10c
data_collator: DataCollatorClass = field(default_factory=DataCollatorClass)
cs = ConfigStore.instance()
cs.store(name="base_config", node=Arguments)
cs.store(group="data", name="base_vg_densecap", node=VGDenseCapDataArgument)
cs.store(group="data", name="base_vg_densecap_local", node=VGDenseCapLocalDataArgument)
cs.store(group="data", name="base_vg_grit_local", node=VGGRiTLocalDataArgument)
cs.store(group="data", name="base_refcoco", node=RefCOCODataArgument)
cs.store(group="data", name="base_sa1b_cap", node=SA1BCapDataArgument)
cs.store(group="data", name="base_coco_instance", node=COCOInstanceDataArgument)
cs.store(group="data", name="base_coco_instance_local", node=COCOInstanceLocalDataArgument)
cs.store(group="data", name="base_objects365_local", node=Objects365LocalDataArgument)
cs.store(group="data", name="base_v3det_local", node=V3DetLocalDataArgument)
cs.store(group="data", name="base_sbu_pseudo_region", node=SBUPseudoRegionDataArgument)
cs.store(group="data", name="base_sbu_pseudo_region_local", node=SBUPseudoRegionLocalDataArgument)
cs.store(group="data", name="base_coco_caption_pseudo_region", node=COCOCaptionPseudoRegion)
cs.store(group="data", name="base_m3d_2d", node=M3D2DLocalDataArgument)
cs.store(group="model", name="base_sam_captioner", node=SAMCaptionerModelArguments)
cs.store(group="model", name="base_sca", node=SCAModelArguments)
cs.store(group="model", name="base_sca_direct_decoding", node=SCADirectDecodingModelArguments)
cs.store(group="model", name="base_sca_multitask", node=SCAMultitaskModelArguments)
cs.store(group="model", name="base_sca_multitask_v2", node=ScaMultitaskV2ModelArguments)
cs.store(group="model", name="base_sca_multitask_split_mixer", node=SCAMultitaskSplitMixerModelArguments)
cs.store(group="model", name="base_sca_direct_decoding_v2", node=SCADirectDecodingV2ModelArguments)
cs.store(group="model", name="base_sca_multitask_roi_pool", node=SCAMultitaskROIPoolModelArguments)
cs.store(group="model", name="base_sca_timm_multitask_v2", node=ScaTimmMultitaskV2ModelArguments)
cs.store(group="wandb", name="base_wandb", node=WandbArguments)
cs.store(group="data_transforms", name="base_data_transforms", node=DataTransformsArguments)
cs.store(group="data_collator", name="base_data_collator", node=DataCollatorClass)
def global_setup(
args: DictConfig,
) -> Tuple[Arguments, SCASeq2SeqTrainingArguments, ModelArguments]:
"""Global setup of arguments."""
if args.training.output_log_dir is not None:
output_log_dir = args.training.output_log_dir
if not osp.exists(output_log_dir):
os.makedirs(output_log_dir)
# NOTE: this is a dirty hack to enable logging to a different directory
# by default in Hydra, logging.root.handlers contains two handler: stream & file
# NOTE: mainly used in amulet
for handler in logging.root.handlers:
if isinstance(handler, logging.FileHandler):
file_path = handler.baseFilename
file_name = osp.basename(file_path)
external_file_path = osp.join(output_log_dir, file_name)
logging.root.addHandler(logging.FileHandler(external_file_path))
logger.info(f"Add external file handler to {external_file_path}")
break
hostname = socket.gethostname()
logger.info(f"Running on {hostname}")
# Convert args to the actual dataclass object, to enable methods. Need to
# delete _n_gpu, a property that TrainingArgs init doesn't expect.
del args.training._n_gpu
# Dirty hack: only run post init when we're ready to convert to TrainingArgs
args.training._run_post_init = True
# NOTE: otherwise, do_eval will be set to True in TrainingArguments.__post_init__
if args.training.do_eval == False and args.training.do_train == False:
args.training.evaluation_strategy = "no"
args.training.load_best_model_at_end = False
training_args = OmegaConf.to_object(args.training)
model_args = OmegaConf.to_object(args.model)
if (
isinstance(model_args, (SCAModelArguments, SCADirectDecodingModelArguments))
and args.model.model_name_or_path is None
):
# NOTE: we need to set the default value of `model_name_or_path` to None
# otherwise, it will be set to `base_sca` by default
raise ValueError(f"{type(model_args)} is not supported in model cfg name.")
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device},"
f" log_level: {log_level} n_gpu: {training_args.n_gpu}"
f" distributed training: {bool(training_args.local_rank != -1)}, 16-bits"
f" training: {training_args.fp16}, bf16 training: {training_args.bf16}"
)
logger.debug(f"Training/evaluation parameters {training_args}")
return args, training_args, model_args