xezpeleta commited on
Commit
8c44e75
Β·
verified Β·
1 Parent(s): 132612d

End of training

Browse files
README.md CHANGED
@@ -3,23 +3,36 @@ library_name: transformers
3
  license: apache-2.0
4
  base_model: openai/whisper-tiny
5
  tags:
 
6
  - generated_from_trainer
 
 
7
  metrics:
8
  - wer
9
  model-index:
10
- - name: openai/whisper-tiny
11
- results: []
 
 
 
 
 
 
 
 
 
 
12
  ---
13
 
14
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
  should probably proofread and complete it, then remove this comment. -->
16
 
17
- # openai/whisper-tiny
18
 
19
- This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
20
  It achieves the following results on the evaluation set:
21
- - Loss: 0.2992
22
- - Wer: 15.7240
23
 
24
  ## Model description
25
 
 
3
  license: apache-2.0
4
  base_model: openai/whisper-tiny
5
  tags:
6
+ - whisper-event
7
  - generated_from_trainer
8
+ datasets:
9
+ - asierhv/composite_corpus_eu_v2.1
10
  metrics:
11
  - wer
12
  model-index:
13
+ - name: Whisper Tiny Basque
14
+ results:
15
+ - task:
16
+ name: Automatic Speech Recognition
17
+ type: automatic-speech-recognition
18
+ dataset:
19
+ name: asierhv/composite_corpus_eu_v2.1
20
+ type: asierhv/composite_corpus_eu_v2.1
21
+ metrics:
22
+ - name: Wer
23
+ type: wer
24
+ value: 14.985509956062447
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
  should probably proofread and complete it, then remove this comment. -->
29
 
30
+ # Whisper Tiny Basque
31
 
32
+ This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the asierhv/composite_corpus_eu_v2.1 dataset.
33
  It achieves the following results on the evaluation set:
34
+ - Loss: 0.3002
35
+ - Wer: 14.9855
36
 
37
  ## Model description
38
 
all_results.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "eval_loss": 0.300187349319458,
4
+ "eval_runtime": 56.9322,
5
+ "eval_samples_per_second": 36.956,
6
+ "eval_steps_per_second": 2.319,
7
+ "eval_wer": 14.985509956062447,
8
+ "total_flos": 7.8780432384e+18,
9
+ "train_loss": 0.24547564173936845,
10
+ "train_runtime": 3924.8092,
11
+ "train_samples_per_second": 81.533,
12
+ "train_steps_per_second": 2.548
13
+ }
eval_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "eval_loss": 0.300187349319458,
4
+ "eval_runtime": 56.9322,
5
+ "eval_samples_per_second": 36.956,
6
+ "eval_steps_per_second": 2.319,
7
+ "eval_wer": 14.985509956062447
8
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "total_flos": 7.8780432384e+18,
4
+ "train_loss": 0.24547564173936845,
5
+ "train_runtime": 3924.8092,
6
+ "train_samples_per_second": 81.533,
7
+ "train_steps_per_second": 2.548
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,2932 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 14.985509956062447,
3
+ "best_model_checkpoint": "./checkpoint-8000",
4
+ "epoch": 1.0,
5
+ "eval_steps": 1000,
6
+ "global_step": 10000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0025,
13
+ "grad_norm": 32.178646087646484,
14
+ "learning_rate": 7.875e-07,
15
+ "loss": 3.5417,
16
+ "step": 25
17
+ },
18
+ {
19
+ "epoch": 0.005,
20
+ "grad_norm": 17.33567237854004,
21
+ "learning_rate": 1.7249999999999998e-06,
22
+ "loss": 2.8499,
23
+ "step": 50
24
+ },
25
+ {
26
+ "epoch": 0.0075,
27
+ "grad_norm": 13.790657043457031,
28
+ "learning_rate": 2.6624999999999995e-06,
29
+ "loss": 1.9843,
30
+ "step": 75
31
+ },
32
+ {
33
+ "epoch": 0.01,
34
+ "grad_norm": 10.804696083068848,
35
+ "learning_rate": 3.6e-06,
36
+ "loss": 1.6114,
37
+ "step": 100
38
+ },
39
+ {
40
+ "epoch": 0.0125,
41
+ "grad_norm": 9.405135154724121,
42
+ "learning_rate": 4.537499999999999e-06,
43
+ "loss": 1.3704,
44
+ "step": 125
45
+ },
46
+ {
47
+ "epoch": 0.015,
48
+ "grad_norm": 8.391704559326172,
49
+ "learning_rate": 5.474999999999999e-06,
50
+ "loss": 1.1665,
51
+ "step": 150
52
+ },
53
+ {
54
+ "epoch": 0.0175,
55
+ "grad_norm": 9.137776374816895,
56
+ "learning_rate": 6.4125e-06,
57
+ "loss": 1.0771,
58
+ "step": 175
59
+ },
60
+ {
61
+ "epoch": 0.02,
62
+ "grad_norm": 9.398157119750977,
63
+ "learning_rate": 7.35e-06,
64
+ "loss": 1.0148,
65
+ "step": 200
66
+ },
67
+ {
68
+ "epoch": 0.0225,
69
+ "grad_norm": 7.459103107452393,
70
+ "learning_rate": 8.2875e-06,
71
+ "loss": 0.8874,
72
+ "step": 225
73
+ },
74
+ {
75
+ "epoch": 0.025,
76
+ "grad_norm": 10.148730278015137,
77
+ "learning_rate": 9.224999999999999e-06,
78
+ "loss": 0.8913,
79
+ "step": 250
80
+ },
81
+ {
82
+ "epoch": 0.0275,
83
+ "grad_norm": 8.423101425170898,
84
+ "learning_rate": 1.01625e-05,
85
+ "loss": 0.8811,
86
+ "step": 275
87
+ },
88
+ {
89
+ "epoch": 0.03,
90
+ "grad_norm": 9.672224998474121,
91
+ "learning_rate": 1.1099999999999999e-05,
92
+ "loss": 0.8374,
93
+ "step": 300
94
+ },
95
+ {
96
+ "epoch": 0.0325,
97
+ "grad_norm": 7.847349166870117,
98
+ "learning_rate": 1.20375e-05,
99
+ "loss": 0.7848,
100
+ "step": 325
101
+ },
102
+ {
103
+ "epoch": 0.035,
104
+ "grad_norm": 7.796125888824463,
105
+ "learning_rate": 1.2974999999999999e-05,
106
+ "loss": 0.7056,
107
+ "step": 350
108
+ },
109
+ {
110
+ "epoch": 0.0375,
111
+ "grad_norm": 8.002777099609375,
112
+ "learning_rate": 1.39125e-05,
113
+ "loss": 0.6117,
114
+ "step": 375
115
+ },
116
+ {
117
+ "epoch": 0.04,
118
+ "grad_norm": 6.5904340744018555,
119
+ "learning_rate": 1.485e-05,
120
+ "loss": 0.584,
121
+ "step": 400
122
+ },
123
+ {
124
+ "epoch": 0.0425,
125
+ "grad_norm": 7.075273513793945,
126
+ "learning_rate": 1.5787499999999997e-05,
127
+ "loss": 0.5353,
128
+ "step": 425
129
+ },
130
+ {
131
+ "epoch": 0.045,
132
+ "grad_norm": 6.499445915222168,
133
+ "learning_rate": 1.6725e-05,
134
+ "loss": 0.5099,
135
+ "step": 450
136
+ },
137
+ {
138
+ "epoch": 0.0475,
139
+ "grad_norm": 6.824000358581543,
140
+ "learning_rate": 1.76625e-05,
141
+ "loss": 0.4846,
142
+ "step": 475
143
+ },
144
+ {
145
+ "epoch": 0.05,
146
+ "grad_norm": 6.962899208068848,
147
+ "learning_rate": 1.8599999999999998e-05,
148
+ "loss": 0.4592,
149
+ "step": 500
150
+ },
151
+ {
152
+ "epoch": 0.0525,
153
+ "grad_norm": 7.1536030769348145,
154
+ "learning_rate": 1.95375e-05,
155
+ "loss": 0.4266,
156
+ "step": 525
157
+ },
158
+ {
159
+ "epoch": 0.055,
160
+ "grad_norm": 5.634274005889893,
161
+ "learning_rate": 2.0475e-05,
162
+ "loss": 0.4271,
163
+ "step": 550
164
+ },
165
+ {
166
+ "epoch": 0.0575,
167
+ "grad_norm": 5.969743728637695,
168
+ "learning_rate": 2.1412499999999995e-05,
169
+ "loss": 0.4049,
170
+ "step": 575
171
+ },
172
+ {
173
+ "epoch": 0.06,
174
+ "grad_norm": 8.386860847473145,
175
+ "learning_rate": 2.2349999999999998e-05,
176
+ "loss": 0.3963,
177
+ "step": 600
178
+ },
179
+ {
180
+ "epoch": 0.0625,
181
+ "grad_norm": 6.4440083503723145,
182
+ "learning_rate": 2.3287499999999997e-05,
183
+ "loss": 0.3566,
184
+ "step": 625
185
+ },
186
+ {
187
+ "epoch": 0.065,
188
+ "grad_norm": 5.125731468200684,
189
+ "learning_rate": 2.4225e-05,
190
+ "loss": 0.3747,
191
+ "step": 650
192
+ },
193
+ {
194
+ "epoch": 0.0675,
195
+ "grad_norm": 5.34471321105957,
196
+ "learning_rate": 2.51625e-05,
197
+ "loss": 0.3635,
198
+ "step": 675
199
+ },
200
+ {
201
+ "epoch": 0.07,
202
+ "grad_norm": 6.247539520263672,
203
+ "learning_rate": 2.6099999999999997e-05,
204
+ "loss": 0.3597,
205
+ "step": 700
206
+ },
207
+ {
208
+ "epoch": 0.0725,
209
+ "grad_norm": 8.403606414794922,
210
+ "learning_rate": 2.7037499999999997e-05,
211
+ "loss": 0.3993,
212
+ "step": 725
213
+ },
214
+ {
215
+ "epoch": 0.075,
216
+ "grad_norm": 6.951033115386963,
217
+ "learning_rate": 2.7975e-05,
218
+ "loss": 0.5305,
219
+ "step": 750
220
+ },
221
+ {
222
+ "epoch": 0.0775,
223
+ "grad_norm": 6.673659324645996,
224
+ "learning_rate": 2.8912499999999998e-05,
225
+ "loss": 0.5134,
226
+ "step": 775
227
+ },
228
+ {
229
+ "epoch": 0.08,
230
+ "grad_norm": 7.272465229034424,
231
+ "learning_rate": 2.985e-05,
232
+ "loss": 0.5594,
233
+ "step": 800
234
+ },
235
+ {
236
+ "epoch": 0.0825,
237
+ "grad_norm": 5.904059410095215,
238
+ "learning_rate": 3.0787499999999996e-05,
239
+ "loss": 0.3991,
240
+ "step": 825
241
+ },
242
+ {
243
+ "epoch": 0.085,
244
+ "grad_norm": 4.807435035705566,
245
+ "learning_rate": 3.1725e-05,
246
+ "loss": 0.3297,
247
+ "step": 850
248
+ },
249
+ {
250
+ "epoch": 0.0875,
251
+ "grad_norm": 4.8213419914245605,
252
+ "learning_rate": 3.2662499999999994e-05,
253
+ "loss": 0.3153,
254
+ "step": 875
255
+ },
256
+ {
257
+ "epoch": 0.09,
258
+ "grad_norm": 6.322027206420898,
259
+ "learning_rate": 3.36e-05,
260
+ "loss": 0.4047,
261
+ "step": 900
262
+ },
263
+ {
264
+ "epoch": 0.0925,
265
+ "grad_norm": 7.58137321472168,
266
+ "learning_rate": 3.45375e-05,
267
+ "loss": 0.4779,
268
+ "step": 925
269
+ },
270
+ {
271
+ "epoch": 0.095,
272
+ "grad_norm": 6.797820568084717,
273
+ "learning_rate": 3.5474999999999995e-05,
274
+ "loss": 0.458,
275
+ "step": 950
276
+ },
277
+ {
278
+ "epoch": 0.0975,
279
+ "grad_norm": 7.3672332763671875,
280
+ "learning_rate": 3.64125e-05,
281
+ "loss": 0.6595,
282
+ "step": 975
283
+ },
284
+ {
285
+ "epoch": 0.1,
286
+ "grad_norm": 7.559723854064941,
287
+ "learning_rate": 3.735e-05,
288
+ "loss": 0.5862,
289
+ "step": 1000
290
+ },
291
+ {
292
+ "epoch": 0.1,
293
+ "eval_loss": 0.5658391118049622,
294
+ "eval_runtime": 61.7179,
295
+ "eval_samples_per_second": 34.091,
296
+ "eval_steps_per_second": 2.139,
297
+ "eval_wer": 33.845938113489765,
298
+ "step": 1000
299
+ },
300
+ {
301
+ "epoch": 0.1025,
302
+ "grad_norm": 6.748581409454346,
303
+ "learning_rate": 3.74125e-05,
304
+ "loss": 0.5033,
305
+ "step": 1025
306
+ },
307
+ {
308
+ "epoch": 0.105,
309
+ "grad_norm": 5.543668270111084,
310
+ "learning_rate": 3.730833333333333e-05,
311
+ "loss": 0.3956,
312
+ "step": 1050
313
+ },
314
+ {
315
+ "epoch": 0.1075,
316
+ "grad_norm": 4.64129638671875,
317
+ "learning_rate": 3.7204166666666665e-05,
318
+ "loss": 0.3021,
319
+ "step": 1075
320
+ },
321
+ {
322
+ "epoch": 0.11,
323
+ "grad_norm": 4.491319179534912,
324
+ "learning_rate": 3.7099999999999994e-05,
325
+ "loss": 0.2538,
326
+ "step": 1100
327
+ },
328
+ {
329
+ "epoch": 0.1125,
330
+ "grad_norm": 4.252546787261963,
331
+ "learning_rate": 3.699583333333333e-05,
332
+ "loss": 0.2439,
333
+ "step": 1125
334
+ },
335
+ {
336
+ "epoch": 0.115,
337
+ "grad_norm": 4.188290119171143,
338
+ "learning_rate": 3.6891666666666664e-05,
339
+ "loss": 0.2602,
340
+ "step": 1150
341
+ },
342
+ {
343
+ "epoch": 0.1175,
344
+ "grad_norm": 3.9564859867095947,
345
+ "learning_rate": 3.678749999999999e-05,
346
+ "loss": 0.2595,
347
+ "step": 1175
348
+ },
349
+ {
350
+ "epoch": 0.12,
351
+ "grad_norm": 4.673700332641602,
352
+ "learning_rate": 3.668333333333333e-05,
353
+ "loss": 0.2423,
354
+ "step": 1200
355
+ },
356
+ {
357
+ "epoch": 0.1225,
358
+ "grad_norm": 6.941758632659912,
359
+ "learning_rate": 3.6579166666666664e-05,
360
+ "loss": 0.3696,
361
+ "step": 1225
362
+ },
363
+ {
364
+ "epoch": 0.125,
365
+ "grad_norm": 6.368224143981934,
366
+ "learning_rate": 3.6475e-05,
367
+ "loss": 0.3809,
368
+ "step": 1250
369
+ },
370
+ {
371
+ "epoch": 0.1275,
372
+ "grad_norm": 6.675568103790283,
373
+ "learning_rate": 3.6370833333333334e-05,
374
+ "loss": 0.4108,
375
+ "step": 1275
376
+ },
377
+ {
378
+ "epoch": 0.13,
379
+ "grad_norm": 7.435705661773682,
380
+ "learning_rate": 3.626666666666666e-05,
381
+ "loss": 0.4293,
382
+ "step": 1300
383
+ },
384
+ {
385
+ "epoch": 0.1325,
386
+ "grad_norm": 6.09748649597168,
387
+ "learning_rate": 3.61625e-05,
388
+ "loss": 0.3692,
389
+ "step": 1325
390
+ },
391
+ {
392
+ "epoch": 0.135,
393
+ "grad_norm": 6.301654815673828,
394
+ "learning_rate": 3.6058333333333333e-05,
395
+ "loss": 0.3756,
396
+ "step": 1350
397
+ },
398
+ {
399
+ "epoch": 0.1375,
400
+ "grad_norm": 6.4854302406311035,
401
+ "learning_rate": 3.595416666666666e-05,
402
+ "loss": 0.3569,
403
+ "step": 1375
404
+ },
405
+ {
406
+ "epoch": 0.14,
407
+ "grad_norm": 6.333820343017578,
408
+ "learning_rate": 3.585e-05,
409
+ "loss": 0.3437,
410
+ "step": 1400
411
+ },
412
+ {
413
+ "epoch": 0.1425,
414
+ "grad_norm": 6.029584884643555,
415
+ "learning_rate": 3.5745833333333326e-05,
416
+ "loss": 0.3517,
417
+ "step": 1425
418
+ },
419
+ {
420
+ "epoch": 0.145,
421
+ "grad_norm": 4.968661308288574,
422
+ "learning_rate": 3.564166666666666e-05,
423
+ "loss": 0.3311,
424
+ "step": 1450
425
+ },
426
+ {
427
+ "epoch": 0.1475,
428
+ "grad_norm": 5.426311492919922,
429
+ "learning_rate": 3.5537499999999996e-05,
430
+ "loss": 0.2655,
431
+ "step": 1475
432
+ },
433
+ {
434
+ "epoch": 0.15,
435
+ "grad_norm": 5.133101463317871,
436
+ "learning_rate": 3.543333333333333e-05,
437
+ "loss": 0.235,
438
+ "step": 1500
439
+ },
440
+ {
441
+ "epoch": 0.1525,
442
+ "grad_norm": 3.7912516593933105,
443
+ "learning_rate": 3.532916666666667e-05,
444
+ "loss": 0.2387,
445
+ "step": 1525
446
+ },
447
+ {
448
+ "epoch": 0.155,
449
+ "grad_norm": 4.808184623718262,
450
+ "learning_rate": 3.5224999999999996e-05,
451
+ "loss": 0.2317,
452
+ "step": 1550
453
+ },
454
+ {
455
+ "epoch": 0.1575,
456
+ "grad_norm": 4.065270900726318,
457
+ "learning_rate": 3.512083333333333e-05,
458
+ "loss": 0.2045,
459
+ "step": 1575
460
+ },
461
+ {
462
+ "epoch": 0.16,
463
+ "grad_norm": 4.333083152770996,
464
+ "learning_rate": 3.5016666666666666e-05,
465
+ "loss": 0.2146,
466
+ "step": 1600
467
+ },
468
+ {
469
+ "epoch": 0.1625,
470
+ "grad_norm": 4.882490634918213,
471
+ "learning_rate": 3.49125e-05,
472
+ "loss": 0.3059,
473
+ "step": 1625
474
+ },
475
+ {
476
+ "epoch": 0.165,
477
+ "grad_norm": 5.470846652984619,
478
+ "learning_rate": 3.480833333333333e-05,
479
+ "loss": 0.3189,
480
+ "step": 1650
481
+ },
482
+ {
483
+ "epoch": 0.1675,
484
+ "grad_norm": 6.800407409667969,
485
+ "learning_rate": 3.4704166666666665e-05,
486
+ "loss": 0.3289,
487
+ "step": 1675
488
+ },
489
+ {
490
+ "epoch": 0.17,
491
+ "grad_norm": 4.934418201446533,
492
+ "learning_rate": 3.4599999999999994e-05,
493
+ "loss": 0.3128,
494
+ "step": 1700
495
+ },
496
+ {
497
+ "epoch": 0.1725,
498
+ "grad_norm": 4.8148908615112305,
499
+ "learning_rate": 3.449583333333333e-05,
500
+ "loss": 0.2578,
501
+ "step": 1725
502
+ },
503
+ {
504
+ "epoch": 0.175,
505
+ "grad_norm": 4.443181991577148,
506
+ "learning_rate": 3.4391666666666665e-05,
507
+ "loss": 0.2424,
508
+ "step": 1750
509
+ },
510
+ {
511
+ "epoch": 0.1775,
512
+ "grad_norm": 4.921210289001465,
513
+ "learning_rate": 3.42875e-05,
514
+ "loss": 0.2128,
515
+ "step": 1775
516
+ },
517
+ {
518
+ "epoch": 0.18,
519
+ "grad_norm": 4.358342170715332,
520
+ "learning_rate": 3.418333333333333e-05,
521
+ "loss": 0.2187,
522
+ "step": 1800
523
+ },
524
+ {
525
+ "epoch": 0.1825,
526
+ "grad_norm": 3.2940409183502197,
527
+ "learning_rate": 3.4079166666666664e-05,
528
+ "loss": 0.2061,
529
+ "step": 1825
530
+ },
531
+ {
532
+ "epoch": 0.185,
533
+ "grad_norm": 3.2484359741210938,
534
+ "learning_rate": 3.3975e-05,
535
+ "loss": 0.1944,
536
+ "step": 1850
537
+ },
538
+ {
539
+ "epoch": 0.1875,
540
+ "grad_norm": 7.2146382331848145,
541
+ "learning_rate": 3.3870833333333334e-05,
542
+ "loss": 0.1954,
543
+ "step": 1875
544
+ },
545
+ {
546
+ "epoch": 0.19,
547
+ "grad_norm": 3.803097724914551,
548
+ "learning_rate": 3.376666666666666e-05,
549
+ "loss": 0.1917,
550
+ "step": 1900
551
+ },
552
+ {
553
+ "epoch": 0.1925,
554
+ "grad_norm": 3.597217082977295,
555
+ "learning_rate": 3.36625e-05,
556
+ "loss": 0.1843,
557
+ "step": 1925
558
+ },
559
+ {
560
+ "epoch": 0.195,
561
+ "grad_norm": 4.769651412963867,
562
+ "learning_rate": 3.355833333333333e-05,
563
+ "loss": 0.2574,
564
+ "step": 1950
565
+ },
566
+ {
567
+ "epoch": 0.1975,
568
+ "grad_norm": 5.800076484680176,
569
+ "learning_rate": 3.345416666666666e-05,
570
+ "loss": 0.3319,
571
+ "step": 1975
572
+ },
573
+ {
574
+ "epoch": 0.2,
575
+ "grad_norm": 5.607431411743164,
576
+ "learning_rate": 3.335e-05,
577
+ "loss": 0.314,
578
+ "step": 2000
579
+ },
580
+ {
581
+ "epoch": 0.2,
582
+ "eval_loss": 0.43032270669937134,
583
+ "eval_runtime": 57.5686,
584
+ "eval_samples_per_second": 36.548,
585
+ "eval_steps_per_second": 2.293,
586
+ "eval_wer": 24.98831448069552,
587
+ "step": 2000
588
+ },
589
+ {
590
+ "epoch": 0.2025,
591
+ "grad_norm": 3.8960702419281006,
592
+ "learning_rate": 3.324583333333333e-05,
593
+ "loss": 0.2659,
594
+ "step": 2025
595
+ },
596
+ {
597
+ "epoch": 0.205,
598
+ "grad_norm": 3.8892998695373535,
599
+ "learning_rate": 3.314166666666666e-05,
600
+ "loss": 0.1938,
601
+ "step": 2050
602
+ },
603
+ {
604
+ "epoch": 0.2075,
605
+ "grad_norm": 4.232676982879639,
606
+ "learning_rate": 3.30375e-05,
607
+ "loss": 0.1869,
608
+ "step": 2075
609
+ },
610
+ {
611
+ "epoch": 0.21,
612
+ "grad_norm": 3.3340296745300293,
613
+ "learning_rate": 3.293333333333333e-05,
614
+ "loss": 0.1826,
615
+ "step": 2100
616
+ },
617
+ {
618
+ "epoch": 0.2125,
619
+ "grad_norm": 3.808135747909546,
620
+ "learning_rate": 3.282916666666667e-05,
621
+ "loss": 0.1597,
622
+ "step": 2125
623
+ },
624
+ {
625
+ "epoch": 0.215,
626
+ "grad_norm": 3.3088366985321045,
627
+ "learning_rate": 3.2724999999999996e-05,
628
+ "loss": 0.1626,
629
+ "step": 2150
630
+ },
631
+ {
632
+ "epoch": 0.2175,
633
+ "grad_norm": 4.035377502441406,
634
+ "learning_rate": 3.262083333333333e-05,
635
+ "loss": 0.1675,
636
+ "step": 2175
637
+ },
638
+ {
639
+ "epoch": 0.22,
640
+ "grad_norm": 4.653134346008301,
641
+ "learning_rate": 3.2516666666666666e-05,
642
+ "loss": 0.2853,
643
+ "step": 2200
644
+ },
645
+ {
646
+ "epoch": 0.2225,
647
+ "grad_norm": 5.569106101989746,
648
+ "learning_rate": 3.2412499999999995e-05,
649
+ "loss": 0.2921,
650
+ "step": 2225
651
+ },
652
+ {
653
+ "epoch": 0.225,
654
+ "grad_norm": 4.800086975097656,
655
+ "learning_rate": 3.230833333333333e-05,
656
+ "loss": 0.3024,
657
+ "step": 2250
658
+ },
659
+ {
660
+ "epoch": 0.2275,
661
+ "grad_norm": 4.1314377784729,
662
+ "learning_rate": 3.2204166666666666e-05,
663
+ "loss": 0.2125,
664
+ "step": 2275
665
+ },
666
+ {
667
+ "epoch": 0.23,
668
+ "grad_norm": 3.3272790908813477,
669
+ "learning_rate": 3.2099999999999994e-05,
670
+ "loss": 0.163,
671
+ "step": 2300
672
+ },
673
+ {
674
+ "epoch": 0.2325,
675
+ "grad_norm": 3.977968215942383,
676
+ "learning_rate": 3.199583333333333e-05,
677
+ "loss": 0.1525,
678
+ "step": 2325
679
+ },
680
+ {
681
+ "epoch": 0.235,
682
+ "grad_norm": 5.358455181121826,
683
+ "learning_rate": 3.1891666666666665e-05,
684
+ "loss": 0.1544,
685
+ "step": 2350
686
+ },
687
+ {
688
+ "epoch": 0.2375,
689
+ "grad_norm": 2.996466875076294,
690
+ "learning_rate": 3.17875e-05,
691
+ "loss": 0.1576,
692
+ "step": 2375
693
+ },
694
+ {
695
+ "epoch": 0.24,
696
+ "grad_norm": 3.985736846923828,
697
+ "learning_rate": 3.168333333333333e-05,
698
+ "loss": 0.1621,
699
+ "step": 2400
700
+ },
701
+ {
702
+ "epoch": 0.2425,
703
+ "grad_norm": 3.0388622283935547,
704
+ "learning_rate": 3.1579166666666664e-05,
705
+ "loss": 0.1644,
706
+ "step": 2425
707
+ },
708
+ {
709
+ "epoch": 0.245,
710
+ "grad_norm": 2.8498051166534424,
711
+ "learning_rate": 3.1475e-05,
712
+ "loss": 0.155,
713
+ "step": 2450
714
+ },
715
+ {
716
+ "epoch": 0.2475,
717
+ "grad_norm": 3.7256104946136475,
718
+ "learning_rate": 3.1370833333333335e-05,
719
+ "loss": 0.163,
720
+ "step": 2475
721
+ },
722
+ {
723
+ "epoch": 0.25,
724
+ "grad_norm": 3.6672263145446777,
725
+ "learning_rate": 3.126666666666666e-05,
726
+ "loss": 0.1859,
727
+ "step": 2500
728
+ },
729
+ {
730
+ "epoch": 0.2525,
731
+ "grad_norm": 5.497701644897461,
732
+ "learning_rate": 3.11625e-05,
733
+ "loss": 0.2491,
734
+ "step": 2525
735
+ },
736
+ {
737
+ "epoch": 0.255,
738
+ "grad_norm": 4.235458850860596,
739
+ "learning_rate": 3.105833333333333e-05,
740
+ "loss": 0.2381,
741
+ "step": 2550
742
+ },
743
+ {
744
+ "epoch": 0.2575,
745
+ "grad_norm": 4.74775505065918,
746
+ "learning_rate": 3.095416666666666e-05,
747
+ "loss": 0.279,
748
+ "step": 2575
749
+ },
750
+ {
751
+ "epoch": 0.26,
752
+ "grad_norm": 3.5344150066375732,
753
+ "learning_rate": 3.085e-05,
754
+ "loss": 0.2067,
755
+ "step": 2600
756
+ },
757
+ {
758
+ "epoch": 0.2625,
759
+ "grad_norm": 3.5317158699035645,
760
+ "learning_rate": 3.074583333333333e-05,
761
+ "loss": 0.1741,
762
+ "step": 2625
763
+ },
764
+ {
765
+ "epoch": 0.265,
766
+ "grad_norm": 3.141709327697754,
767
+ "learning_rate": 3.064166666666666e-05,
768
+ "loss": 0.1565,
769
+ "step": 2650
770
+ },
771
+ {
772
+ "epoch": 0.2675,
773
+ "grad_norm": 2.9644110202789307,
774
+ "learning_rate": 3.05375e-05,
775
+ "loss": 0.1501,
776
+ "step": 2675
777
+ },
778
+ {
779
+ "epoch": 0.27,
780
+ "grad_norm": 3.013913631439209,
781
+ "learning_rate": 3.0433333333333332e-05,
782
+ "loss": 0.1584,
783
+ "step": 2700
784
+ },
785
+ {
786
+ "epoch": 0.2725,
787
+ "grad_norm": 3.1557493209838867,
788
+ "learning_rate": 3.0329166666666664e-05,
789
+ "loss": 0.1685,
790
+ "step": 2725
791
+ },
792
+ {
793
+ "epoch": 0.275,
794
+ "grad_norm": 4.391005516052246,
795
+ "learning_rate": 3.0225e-05,
796
+ "loss": 0.1813,
797
+ "step": 2750
798
+ },
799
+ {
800
+ "epoch": 0.2775,
801
+ "grad_norm": 5.381415367126465,
802
+ "learning_rate": 3.0120833333333328e-05,
803
+ "loss": 0.3171,
804
+ "step": 2775
805
+ },
806
+ {
807
+ "epoch": 0.28,
808
+ "grad_norm": 4.508987903594971,
809
+ "learning_rate": 3.0016666666666663e-05,
810
+ "loss": 0.2927,
811
+ "step": 2800
812
+ },
813
+ {
814
+ "epoch": 0.2825,
815
+ "grad_norm": 4.837850570678711,
816
+ "learning_rate": 2.9912499999999995e-05,
817
+ "loss": 0.2568,
818
+ "step": 2825
819
+ },
820
+ {
821
+ "epoch": 0.285,
822
+ "grad_norm": 4.011997699737549,
823
+ "learning_rate": 2.980833333333333e-05,
824
+ "loss": 0.2629,
825
+ "step": 2850
826
+ },
827
+ {
828
+ "epoch": 0.2875,
829
+ "grad_norm": 4.157077312469482,
830
+ "learning_rate": 2.9704166666666662e-05,
831
+ "loss": 0.2561,
832
+ "step": 2875
833
+ },
834
+ {
835
+ "epoch": 0.29,
836
+ "grad_norm": 5.459561347961426,
837
+ "learning_rate": 2.9599999999999998e-05,
838
+ "loss": 0.2493,
839
+ "step": 2900
840
+ },
841
+ {
842
+ "epoch": 0.2925,
843
+ "grad_norm": 3.367072343826294,
844
+ "learning_rate": 2.949583333333333e-05,
845
+ "loss": 0.2006,
846
+ "step": 2925
847
+ },
848
+ {
849
+ "epoch": 0.295,
850
+ "grad_norm": 3.317788600921631,
851
+ "learning_rate": 2.9391666666666665e-05,
852
+ "loss": 0.1614,
853
+ "step": 2950
854
+ },
855
+ {
856
+ "epoch": 0.2975,
857
+ "grad_norm": 4.068172454833984,
858
+ "learning_rate": 2.9287499999999997e-05,
859
+ "loss": 0.1683,
860
+ "step": 2975
861
+ },
862
+ {
863
+ "epoch": 0.3,
864
+ "grad_norm": 3.870027542114258,
865
+ "learning_rate": 2.9183333333333332e-05,
866
+ "loss": 0.2244,
867
+ "step": 3000
868
+ },
869
+ {
870
+ "epoch": 0.3,
871
+ "eval_loss": 0.40985628962516785,
872
+ "eval_runtime": 58.8739,
873
+ "eval_samples_per_second": 35.737,
874
+ "eval_steps_per_second": 2.242,
875
+ "eval_wer": 21.692998036832755,
876
+ "step": 3000
877
+ },
878
+ {
879
+ "epoch": 0.3025,
880
+ "grad_norm": 5.575135231018066,
881
+ "learning_rate": 2.9079166666666664e-05,
882
+ "loss": 0.2758,
883
+ "step": 3025
884
+ },
885
+ {
886
+ "epoch": 0.305,
887
+ "grad_norm": 6.743279933929443,
888
+ "learning_rate": 2.8974999999999996e-05,
889
+ "loss": 0.3198,
890
+ "step": 3050
891
+ },
892
+ {
893
+ "epoch": 0.3075,
894
+ "grad_norm": 3.2028794288635254,
895
+ "learning_rate": 2.8870833333333328e-05,
896
+ "loss": 0.2196,
897
+ "step": 3075
898
+ },
899
+ {
900
+ "epoch": 0.31,
901
+ "grad_norm": 3.93858003616333,
902
+ "learning_rate": 2.8766666666666663e-05,
903
+ "loss": 0.1707,
904
+ "step": 3100
905
+ },
906
+ {
907
+ "epoch": 0.3125,
908
+ "grad_norm": 3.316304922103882,
909
+ "learning_rate": 2.8662499999999995e-05,
910
+ "loss": 0.1511,
911
+ "step": 3125
912
+ },
913
+ {
914
+ "epoch": 0.315,
915
+ "grad_norm": 4.505865097045898,
916
+ "learning_rate": 2.855833333333333e-05,
917
+ "loss": 0.1823,
918
+ "step": 3150
919
+ },
920
+ {
921
+ "epoch": 0.3175,
922
+ "grad_norm": 4.541491508483887,
923
+ "learning_rate": 2.8454166666666663e-05,
924
+ "loss": 0.2677,
925
+ "step": 3175
926
+ },
927
+ {
928
+ "epoch": 0.32,
929
+ "grad_norm": 5.266469478607178,
930
+ "learning_rate": 2.8349999999999998e-05,
931
+ "loss": 0.2491,
932
+ "step": 3200
933
+ },
934
+ {
935
+ "epoch": 0.3225,
936
+ "grad_norm": 4.68573522567749,
937
+ "learning_rate": 2.824583333333333e-05,
938
+ "loss": 0.2651,
939
+ "step": 3225
940
+ },
941
+ {
942
+ "epoch": 0.325,
943
+ "grad_norm": 4.3486127853393555,
944
+ "learning_rate": 2.8141666666666665e-05,
945
+ "loss": 0.2176,
946
+ "step": 3250
947
+ },
948
+ {
949
+ "epoch": 0.3275,
950
+ "grad_norm": 5.374783515930176,
951
+ "learning_rate": 2.80375e-05,
952
+ "loss": 0.2237,
953
+ "step": 3275
954
+ },
955
+ {
956
+ "epoch": 0.33,
957
+ "grad_norm": 3.7645037174224854,
958
+ "learning_rate": 2.7933333333333332e-05,
959
+ "loss": 0.2381,
960
+ "step": 3300
961
+ },
962
+ {
963
+ "epoch": 0.3325,
964
+ "grad_norm": 3.953054666519165,
965
+ "learning_rate": 2.7829166666666668e-05,
966
+ "loss": 0.189,
967
+ "step": 3325
968
+ },
969
+ {
970
+ "epoch": 0.335,
971
+ "grad_norm": 3.9426944255828857,
972
+ "learning_rate": 2.7724999999999996e-05,
973
+ "loss": 0.1514,
974
+ "step": 3350
975
+ },
976
+ {
977
+ "epoch": 0.3375,
978
+ "grad_norm": 3.1478254795074463,
979
+ "learning_rate": 2.7620833333333328e-05,
980
+ "loss": 0.1353,
981
+ "step": 3375
982
+ },
983
+ {
984
+ "epoch": 0.34,
985
+ "grad_norm": 3.234048366546631,
986
+ "learning_rate": 2.7516666666666664e-05,
987
+ "loss": 0.1437,
988
+ "step": 3400
989
+ },
990
+ {
991
+ "epoch": 0.3425,
992
+ "grad_norm": 3.828132390975952,
993
+ "learning_rate": 2.7412499999999995e-05,
994
+ "loss": 0.1453,
995
+ "step": 3425
996
+ },
997
+ {
998
+ "epoch": 0.345,
999
+ "grad_norm": 2.6246049404144287,
1000
+ "learning_rate": 2.730833333333333e-05,
1001
+ "loss": 0.1369,
1002
+ "step": 3450
1003
+ },
1004
+ {
1005
+ "epoch": 0.3475,
1006
+ "grad_norm": 3.3502352237701416,
1007
+ "learning_rate": 2.7204166666666663e-05,
1008
+ "loss": 0.132,
1009
+ "step": 3475
1010
+ },
1011
+ {
1012
+ "epoch": 0.35,
1013
+ "grad_norm": 4.489558696746826,
1014
+ "learning_rate": 2.7099999999999998e-05,
1015
+ "loss": 0.1607,
1016
+ "step": 3500
1017
+ },
1018
+ {
1019
+ "epoch": 0.3525,
1020
+ "grad_norm": 3.3890199661254883,
1021
+ "learning_rate": 2.6995833333333333e-05,
1022
+ "loss": 0.1498,
1023
+ "step": 3525
1024
+ },
1025
+ {
1026
+ "epoch": 0.355,
1027
+ "grad_norm": 5.810647487640381,
1028
+ "learning_rate": 2.6891666666666665e-05,
1029
+ "loss": 0.1479,
1030
+ "step": 3550
1031
+ },
1032
+ {
1033
+ "epoch": 0.3575,
1034
+ "grad_norm": 5.223288059234619,
1035
+ "learning_rate": 2.67875e-05,
1036
+ "loss": 0.2281,
1037
+ "step": 3575
1038
+ },
1039
+ {
1040
+ "epoch": 0.36,
1041
+ "grad_norm": 4.546659469604492,
1042
+ "learning_rate": 2.6683333333333333e-05,
1043
+ "loss": 0.2638,
1044
+ "step": 3600
1045
+ },
1046
+ {
1047
+ "epoch": 0.3625,
1048
+ "grad_norm": 4.0937018394470215,
1049
+ "learning_rate": 2.657916666666666e-05,
1050
+ "loss": 0.2437,
1051
+ "step": 3625
1052
+ },
1053
+ {
1054
+ "epoch": 0.365,
1055
+ "grad_norm": 2.648258686065674,
1056
+ "learning_rate": 2.6474999999999996e-05,
1057
+ "loss": 0.1537,
1058
+ "step": 3650
1059
+ },
1060
+ {
1061
+ "epoch": 0.3675,
1062
+ "grad_norm": 3.579690456390381,
1063
+ "learning_rate": 2.637083333333333e-05,
1064
+ "loss": 0.1338,
1065
+ "step": 3675
1066
+ },
1067
+ {
1068
+ "epoch": 0.37,
1069
+ "grad_norm": 2.849726438522339,
1070
+ "learning_rate": 2.6266666666666664e-05,
1071
+ "loss": 0.1334,
1072
+ "step": 3700
1073
+ },
1074
+ {
1075
+ "epoch": 0.3725,
1076
+ "grad_norm": 3.449441432952881,
1077
+ "learning_rate": 2.61625e-05,
1078
+ "loss": 0.1603,
1079
+ "step": 3725
1080
+ },
1081
+ {
1082
+ "epoch": 0.375,
1083
+ "grad_norm": 4.7894768714904785,
1084
+ "learning_rate": 2.605833333333333e-05,
1085
+ "loss": 0.2046,
1086
+ "step": 3750
1087
+ },
1088
+ {
1089
+ "epoch": 0.3775,
1090
+ "grad_norm": 3.9832916259765625,
1091
+ "learning_rate": 2.5954166666666666e-05,
1092
+ "loss": 0.25,
1093
+ "step": 3775
1094
+ },
1095
+ {
1096
+ "epoch": 0.38,
1097
+ "grad_norm": 4.628417015075684,
1098
+ "learning_rate": 2.5849999999999998e-05,
1099
+ "loss": 0.2515,
1100
+ "step": 3800
1101
+ },
1102
+ {
1103
+ "epoch": 0.3825,
1104
+ "grad_norm": 5.086034297943115,
1105
+ "learning_rate": 2.5745833333333333e-05,
1106
+ "loss": 0.253,
1107
+ "step": 3825
1108
+ },
1109
+ {
1110
+ "epoch": 0.385,
1111
+ "grad_norm": 5.298262119293213,
1112
+ "learning_rate": 2.5641666666666665e-05,
1113
+ "loss": 0.2664,
1114
+ "step": 3850
1115
+ },
1116
+ {
1117
+ "epoch": 0.3875,
1118
+ "grad_norm": 4.012029647827148,
1119
+ "learning_rate": 2.55375e-05,
1120
+ "loss": 0.234,
1121
+ "step": 3875
1122
+ },
1123
+ {
1124
+ "epoch": 0.39,
1125
+ "grad_norm": 4.897658824920654,
1126
+ "learning_rate": 2.543333333333333e-05,
1127
+ "loss": 0.1752,
1128
+ "step": 3900
1129
+ },
1130
+ {
1131
+ "epoch": 0.3925,
1132
+ "grad_norm": 2.986084222793579,
1133
+ "learning_rate": 2.5329166666666665e-05,
1134
+ "loss": 0.1496,
1135
+ "step": 3925
1136
+ },
1137
+ {
1138
+ "epoch": 0.395,
1139
+ "grad_norm": 3.444263219833374,
1140
+ "learning_rate": 2.5224999999999997e-05,
1141
+ "loss": 0.141,
1142
+ "step": 3950
1143
+ },
1144
+ {
1145
+ "epoch": 0.3975,
1146
+ "grad_norm": 6.647165775299072,
1147
+ "learning_rate": 2.5120833333333332e-05,
1148
+ "loss": 0.2411,
1149
+ "step": 3975
1150
+ },
1151
+ {
1152
+ "epoch": 0.4,
1153
+ "grad_norm": 4.901034832000732,
1154
+ "learning_rate": 2.5016666666666664e-05,
1155
+ "loss": 0.3024,
1156
+ "step": 4000
1157
+ },
1158
+ {
1159
+ "epoch": 0.4,
1160
+ "eval_loss": 0.3800531327724457,
1161
+ "eval_runtime": 59.3618,
1162
+ "eval_samples_per_second": 35.444,
1163
+ "eval_steps_per_second": 2.224,
1164
+ "eval_wer": 21.772459568103205,
1165
+ "step": 4000
1166
+ },
1167
+ {
1168
+ "epoch": 0.4025,
1169
+ "grad_norm": 3.827197313308716,
1170
+ "learning_rate": 2.49125e-05,
1171
+ "loss": 0.2243,
1172
+ "step": 4025
1173
+ },
1174
+ {
1175
+ "epoch": 0.405,
1176
+ "grad_norm": 5.707655429840088,
1177
+ "learning_rate": 2.480833333333333e-05,
1178
+ "loss": 0.3027,
1179
+ "step": 4050
1180
+ },
1181
+ {
1182
+ "epoch": 0.4075,
1183
+ "grad_norm": 4.641834259033203,
1184
+ "learning_rate": 2.4704166666666666e-05,
1185
+ "loss": 0.2182,
1186
+ "step": 4075
1187
+ },
1188
+ {
1189
+ "epoch": 0.41,
1190
+ "grad_norm": 3.259056329727173,
1191
+ "learning_rate": 2.4599999999999998e-05,
1192
+ "loss": 0.2125,
1193
+ "step": 4100
1194
+ },
1195
+ {
1196
+ "epoch": 0.4125,
1197
+ "grad_norm": 2.5339012145996094,
1198
+ "learning_rate": 2.4495833333333334e-05,
1199
+ "loss": 0.1519,
1200
+ "step": 4125
1201
+ },
1202
+ {
1203
+ "epoch": 0.415,
1204
+ "grad_norm": 3.520731210708618,
1205
+ "learning_rate": 2.4391666666666666e-05,
1206
+ "loss": 0.1316,
1207
+ "step": 4150
1208
+ },
1209
+ {
1210
+ "epoch": 0.4175,
1211
+ "grad_norm": 3.302873373031616,
1212
+ "learning_rate": 2.4287499999999997e-05,
1213
+ "loss": 0.1396,
1214
+ "step": 4175
1215
+ },
1216
+ {
1217
+ "epoch": 0.42,
1218
+ "grad_norm": 3.5453193187713623,
1219
+ "learning_rate": 2.418333333333333e-05,
1220
+ "loss": 0.132,
1221
+ "step": 4200
1222
+ },
1223
+ {
1224
+ "epoch": 0.4225,
1225
+ "grad_norm": 2.582653522491455,
1226
+ "learning_rate": 2.4079166666666665e-05,
1227
+ "loss": 0.1394,
1228
+ "step": 4225
1229
+ },
1230
+ {
1231
+ "epoch": 0.425,
1232
+ "grad_norm": 3.1388375759124756,
1233
+ "learning_rate": 2.3974999999999997e-05,
1234
+ "loss": 0.1351,
1235
+ "step": 4250
1236
+ },
1237
+ {
1238
+ "epoch": 0.4275,
1239
+ "grad_norm": 3.6783761978149414,
1240
+ "learning_rate": 2.3870833333333332e-05,
1241
+ "loss": 0.1508,
1242
+ "step": 4275
1243
+ },
1244
+ {
1245
+ "epoch": 0.43,
1246
+ "grad_norm": 4.66838264465332,
1247
+ "learning_rate": 2.3766666666666664e-05,
1248
+ "loss": 0.2209,
1249
+ "step": 4300
1250
+ },
1251
+ {
1252
+ "epoch": 0.4325,
1253
+ "grad_norm": 4.905246734619141,
1254
+ "learning_rate": 2.36625e-05,
1255
+ "loss": 0.1991,
1256
+ "step": 4325
1257
+ },
1258
+ {
1259
+ "epoch": 0.435,
1260
+ "grad_norm": 4.691884517669678,
1261
+ "learning_rate": 2.355833333333333e-05,
1262
+ "loss": 0.2077,
1263
+ "step": 4350
1264
+ },
1265
+ {
1266
+ "epoch": 0.4375,
1267
+ "grad_norm": 2.6007065773010254,
1268
+ "learning_rate": 2.3454166666666666e-05,
1269
+ "loss": 0.1266,
1270
+ "step": 4375
1271
+ },
1272
+ {
1273
+ "epoch": 0.44,
1274
+ "grad_norm": 9.824126243591309,
1275
+ "learning_rate": 2.335e-05,
1276
+ "loss": 0.1125,
1277
+ "step": 4400
1278
+ },
1279
+ {
1280
+ "epoch": 0.4425,
1281
+ "grad_norm": 3.417362689971924,
1282
+ "learning_rate": 2.3245833333333334e-05,
1283
+ "loss": 0.125,
1284
+ "step": 4425
1285
+ },
1286
+ {
1287
+ "epoch": 0.445,
1288
+ "grad_norm": 3.469744920730591,
1289
+ "learning_rate": 2.3141666666666666e-05,
1290
+ "loss": 0.1466,
1291
+ "step": 4450
1292
+ },
1293
+ {
1294
+ "epoch": 0.4475,
1295
+ "grad_norm": 3.0977509021759033,
1296
+ "learning_rate": 2.3037499999999998e-05,
1297
+ "loss": 0.149,
1298
+ "step": 4475
1299
+ },
1300
+ {
1301
+ "epoch": 0.45,
1302
+ "grad_norm": 3.3727025985717773,
1303
+ "learning_rate": 2.293333333333333e-05,
1304
+ "loss": 0.1388,
1305
+ "step": 4500
1306
+ },
1307
+ {
1308
+ "epoch": 0.4525,
1309
+ "grad_norm": 4.079521656036377,
1310
+ "learning_rate": 2.2829166666666665e-05,
1311
+ "loss": 0.1807,
1312
+ "step": 4525
1313
+ },
1314
+ {
1315
+ "epoch": 0.455,
1316
+ "grad_norm": 4.479795455932617,
1317
+ "learning_rate": 2.2724999999999997e-05,
1318
+ "loss": 0.2362,
1319
+ "step": 4550
1320
+ },
1321
+ {
1322
+ "epoch": 0.4575,
1323
+ "grad_norm": 5.127561092376709,
1324
+ "learning_rate": 2.2620833333333332e-05,
1325
+ "loss": 0.2232,
1326
+ "step": 4575
1327
+ },
1328
+ {
1329
+ "epoch": 0.46,
1330
+ "grad_norm": 4.606805801391602,
1331
+ "learning_rate": 2.2516666666666664e-05,
1332
+ "loss": 0.2392,
1333
+ "step": 4600
1334
+ },
1335
+ {
1336
+ "epoch": 0.4625,
1337
+ "grad_norm": 4.652634620666504,
1338
+ "learning_rate": 2.24125e-05,
1339
+ "loss": 0.2442,
1340
+ "step": 4625
1341
+ },
1342
+ {
1343
+ "epoch": 0.465,
1344
+ "grad_norm": 5.170529365539551,
1345
+ "learning_rate": 2.230833333333333e-05,
1346
+ "loss": 0.2364,
1347
+ "step": 4650
1348
+ },
1349
+ {
1350
+ "epoch": 0.4675,
1351
+ "grad_norm": 4.186745643615723,
1352
+ "learning_rate": 2.2204166666666667e-05,
1353
+ "loss": 0.204,
1354
+ "step": 4675
1355
+ },
1356
+ {
1357
+ "epoch": 0.47,
1358
+ "grad_norm": 3.336618423461914,
1359
+ "learning_rate": 2.21e-05,
1360
+ "loss": 0.1811,
1361
+ "step": 4700
1362
+ },
1363
+ {
1364
+ "epoch": 0.4725,
1365
+ "grad_norm": 4.125630855560303,
1366
+ "learning_rate": 2.1995833333333334e-05,
1367
+ "loss": 0.1953,
1368
+ "step": 4725
1369
+ },
1370
+ {
1371
+ "epoch": 0.475,
1372
+ "grad_norm": 3.7965681552886963,
1373
+ "learning_rate": 2.1891666666666662e-05,
1374
+ "loss": 0.1929,
1375
+ "step": 4750
1376
+ },
1377
+ {
1378
+ "epoch": 0.4775,
1379
+ "grad_norm": 3.5311403274536133,
1380
+ "learning_rate": 2.1787499999999998e-05,
1381
+ "loss": 0.1436,
1382
+ "step": 4775
1383
+ },
1384
+ {
1385
+ "epoch": 0.48,
1386
+ "grad_norm": 3.0808041095733643,
1387
+ "learning_rate": 2.168333333333333e-05,
1388
+ "loss": 0.1581,
1389
+ "step": 4800
1390
+ },
1391
+ {
1392
+ "epoch": 0.4825,
1393
+ "grad_norm": 3.254953384399414,
1394
+ "learning_rate": 2.1579166666666665e-05,
1395
+ "loss": 0.1331,
1396
+ "step": 4825
1397
+ },
1398
+ {
1399
+ "epoch": 0.485,
1400
+ "grad_norm": 3.7512283325195312,
1401
+ "learning_rate": 2.1474999999999997e-05,
1402
+ "loss": 0.1534,
1403
+ "step": 4850
1404
+ },
1405
+ {
1406
+ "epoch": 0.4875,
1407
+ "grad_norm": 4.095212936401367,
1408
+ "learning_rate": 2.1370833333333332e-05,
1409
+ "loss": 0.1611,
1410
+ "step": 4875
1411
+ },
1412
+ {
1413
+ "epoch": 0.49,
1414
+ "grad_norm": 4.149164199829102,
1415
+ "learning_rate": 2.1266666666666664e-05,
1416
+ "loss": 0.1834,
1417
+ "step": 4900
1418
+ },
1419
+ {
1420
+ "epoch": 0.4925,
1421
+ "grad_norm": 2.9498376846313477,
1422
+ "learning_rate": 2.11625e-05,
1423
+ "loss": 0.1653,
1424
+ "step": 4925
1425
+ },
1426
+ {
1427
+ "epoch": 0.495,
1428
+ "grad_norm": 3.2201554775238037,
1429
+ "learning_rate": 2.105833333333333e-05,
1430
+ "loss": 0.1379,
1431
+ "step": 4950
1432
+ },
1433
+ {
1434
+ "epoch": 0.4975,
1435
+ "grad_norm": 3.2108354568481445,
1436
+ "learning_rate": 2.0954166666666667e-05,
1437
+ "loss": 0.1281,
1438
+ "step": 4975
1439
+ },
1440
+ {
1441
+ "epoch": 0.5,
1442
+ "grad_norm": 3.786989212036133,
1443
+ "learning_rate": 2.085e-05,
1444
+ "loss": 0.1309,
1445
+ "step": 5000
1446
+ },
1447
+ {
1448
+ "epoch": 0.5,
1449
+ "eval_loss": 0.37590494751930237,
1450
+ "eval_runtime": 59.5468,
1451
+ "eval_samples_per_second": 35.334,
1452
+ "eval_steps_per_second": 2.217,
1453
+ "eval_wer": 18.22941011498551,
1454
+ "step": 5000
1455
+ },
1456
+ {
1457
+ "epoch": 0.5025,
1458
+ "grad_norm": 3.3882791996002197,
1459
+ "learning_rate": 2.074583333333333e-05,
1460
+ "loss": 0.1873,
1461
+ "step": 5025
1462
+ },
1463
+ {
1464
+ "epoch": 0.505,
1465
+ "grad_norm": 3.8903958797454834,
1466
+ "learning_rate": 2.0641666666666662e-05,
1467
+ "loss": 0.1647,
1468
+ "step": 5050
1469
+ },
1470
+ {
1471
+ "epoch": 0.5075,
1472
+ "grad_norm": 4.302113056182861,
1473
+ "learning_rate": 2.0537499999999998e-05,
1474
+ "loss": 0.2523,
1475
+ "step": 5075
1476
+ },
1477
+ {
1478
+ "epoch": 0.51,
1479
+ "grad_norm": 4.574698448181152,
1480
+ "learning_rate": 2.043333333333333e-05,
1481
+ "loss": 0.2285,
1482
+ "step": 5100
1483
+ },
1484
+ {
1485
+ "epoch": 0.5125,
1486
+ "grad_norm": 4.252900123596191,
1487
+ "learning_rate": 2.0329166666666665e-05,
1488
+ "loss": 0.1976,
1489
+ "step": 5125
1490
+ },
1491
+ {
1492
+ "epoch": 0.515,
1493
+ "grad_norm": 5.135857582092285,
1494
+ "learning_rate": 2.0224999999999997e-05,
1495
+ "loss": 0.2034,
1496
+ "step": 5150
1497
+ },
1498
+ {
1499
+ "epoch": 0.5175,
1500
+ "grad_norm": 2.7495837211608887,
1501
+ "learning_rate": 2.0120833333333332e-05,
1502
+ "loss": 0.1707,
1503
+ "step": 5175
1504
+ },
1505
+ {
1506
+ "epoch": 0.52,
1507
+ "grad_norm": 2.8536860942840576,
1508
+ "learning_rate": 2.0016666666666664e-05,
1509
+ "loss": 0.1165,
1510
+ "step": 5200
1511
+ },
1512
+ {
1513
+ "epoch": 0.5225,
1514
+ "grad_norm": 2.8752596378326416,
1515
+ "learning_rate": 1.99125e-05,
1516
+ "loss": 0.1224,
1517
+ "step": 5225
1518
+ },
1519
+ {
1520
+ "epoch": 0.525,
1521
+ "grad_norm": 2.7139313220977783,
1522
+ "learning_rate": 1.980833333333333e-05,
1523
+ "loss": 0.1221,
1524
+ "step": 5250
1525
+ },
1526
+ {
1527
+ "epoch": 0.5275,
1528
+ "grad_norm": 2.398601531982422,
1529
+ "learning_rate": 1.9704166666666667e-05,
1530
+ "loss": 0.123,
1531
+ "step": 5275
1532
+ },
1533
+ {
1534
+ "epoch": 0.53,
1535
+ "grad_norm": 3.568558931350708,
1536
+ "learning_rate": 1.9599999999999995e-05,
1537
+ "loss": 0.1287,
1538
+ "step": 5300
1539
+ },
1540
+ {
1541
+ "epoch": 0.5325,
1542
+ "grad_norm": 3.4306693077087402,
1543
+ "learning_rate": 1.949583333333333e-05,
1544
+ "loss": 0.1282,
1545
+ "step": 5325
1546
+ },
1547
+ {
1548
+ "epoch": 0.535,
1549
+ "grad_norm": 4.469999313354492,
1550
+ "learning_rate": 1.9391666666666663e-05,
1551
+ "loss": 0.1709,
1552
+ "step": 5350
1553
+ },
1554
+ {
1555
+ "epoch": 0.5375,
1556
+ "grad_norm": 4.155087471008301,
1557
+ "learning_rate": 1.9287499999999998e-05,
1558
+ "loss": 0.202,
1559
+ "step": 5375
1560
+ },
1561
+ {
1562
+ "epoch": 0.54,
1563
+ "grad_norm": 3.4707844257354736,
1564
+ "learning_rate": 1.918333333333333e-05,
1565
+ "loss": 0.1904,
1566
+ "step": 5400
1567
+ },
1568
+ {
1569
+ "epoch": 0.5425,
1570
+ "grad_norm": 4.137521266937256,
1571
+ "learning_rate": 1.9079166666666665e-05,
1572
+ "loss": 0.184,
1573
+ "step": 5425
1574
+ },
1575
+ {
1576
+ "epoch": 0.545,
1577
+ "grad_norm": 3.6141257286071777,
1578
+ "learning_rate": 1.8974999999999997e-05,
1579
+ "loss": 0.1629,
1580
+ "step": 5450
1581
+ },
1582
+ {
1583
+ "epoch": 0.5475,
1584
+ "grad_norm": 3.5112478733062744,
1585
+ "learning_rate": 1.8870833333333332e-05,
1586
+ "loss": 0.1358,
1587
+ "step": 5475
1588
+ },
1589
+ {
1590
+ "epoch": 0.55,
1591
+ "grad_norm": 3.2462754249572754,
1592
+ "learning_rate": 1.8766666666666664e-05,
1593
+ "loss": 0.1379,
1594
+ "step": 5500
1595
+ },
1596
+ {
1597
+ "epoch": 0.5525,
1598
+ "grad_norm": 5.152227878570557,
1599
+ "learning_rate": 1.8662499999999996e-05,
1600
+ "loss": 0.1776,
1601
+ "step": 5525
1602
+ },
1603
+ {
1604
+ "epoch": 0.555,
1605
+ "grad_norm": 4.612731456756592,
1606
+ "learning_rate": 1.855833333333333e-05,
1607
+ "loss": 0.2047,
1608
+ "step": 5550
1609
+ },
1610
+ {
1611
+ "epoch": 0.5575,
1612
+ "grad_norm": 4.244606018066406,
1613
+ "learning_rate": 1.8454166666666663e-05,
1614
+ "loss": 0.1606,
1615
+ "step": 5575
1616
+ },
1617
+ {
1618
+ "epoch": 0.56,
1619
+ "grad_norm": 2.2419683933258057,
1620
+ "learning_rate": 1.835e-05,
1621
+ "loss": 0.1089,
1622
+ "step": 5600
1623
+ },
1624
+ {
1625
+ "epoch": 0.5625,
1626
+ "grad_norm": 3.0442473888397217,
1627
+ "learning_rate": 1.8245833333333334e-05,
1628
+ "loss": 0.0874,
1629
+ "step": 5625
1630
+ },
1631
+ {
1632
+ "epoch": 0.565,
1633
+ "grad_norm": 2.6160330772399902,
1634
+ "learning_rate": 1.8141666666666663e-05,
1635
+ "loss": 0.0896,
1636
+ "step": 5650
1637
+ },
1638
+ {
1639
+ "epoch": 0.5675,
1640
+ "grad_norm": 2.5410189628601074,
1641
+ "learning_rate": 1.8037499999999998e-05,
1642
+ "loss": 0.1159,
1643
+ "step": 5675
1644
+ },
1645
+ {
1646
+ "epoch": 0.57,
1647
+ "grad_norm": 3.572497606277466,
1648
+ "learning_rate": 1.793333333333333e-05,
1649
+ "loss": 0.1245,
1650
+ "step": 5700
1651
+ },
1652
+ {
1653
+ "epoch": 0.5725,
1654
+ "grad_norm": 2.8839869499206543,
1655
+ "learning_rate": 1.7829166666666665e-05,
1656
+ "loss": 0.1236,
1657
+ "step": 5725
1658
+ },
1659
+ {
1660
+ "epoch": 0.575,
1661
+ "grad_norm": 2.6902310848236084,
1662
+ "learning_rate": 1.7725e-05,
1663
+ "loss": 0.1165,
1664
+ "step": 5750
1665
+ },
1666
+ {
1667
+ "epoch": 0.5775,
1668
+ "grad_norm": 2.7092816829681396,
1669
+ "learning_rate": 1.7620833333333332e-05,
1670
+ "loss": 0.1164,
1671
+ "step": 5775
1672
+ },
1673
+ {
1674
+ "epoch": 0.58,
1675
+ "grad_norm": 2.8278088569641113,
1676
+ "learning_rate": 1.7516666666666664e-05,
1677
+ "loss": 0.1098,
1678
+ "step": 5800
1679
+ },
1680
+ {
1681
+ "epoch": 0.5825,
1682
+ "grad_norm": 2.267011880874634,
1683
+ "learning_rate": 1.7412499999999996e-05,
1684
+ "loss": 0.096,
1685
+ "step": 5825
1686
+ },
1687
+ {
1688
+ "epoch": 0.585,
1689
+ "grad_norm": 3.5820508003234863,
1690
+ "learning_rate": 1.730833333333333e-05,
1691
+ "loss": 0.1046,
1692
+ "step": 5850
1693
+ },
1694
+ {
1695
+ "epoch": 0.5875,
1696
+ "grad_norm": 3.4889466762542725,
1697
+ "learning_rate": 1.7204166666666667e-05,
1698
+ "loss": 0.1114,
1699
+ "step": 5875
1700
+ },
1701
+ {
1702
+ "epoch": 0.59,
1703
+ "grad_norm": 3.823050022125244,
1704
+ "learning_rate": 1.71e-05,
1705
+ "loss": 0.1408,
1706
+ "step": 5900
1707
+ },
1708
+ {
1709
+ "epoch": 0.5925,
1710
+ "grad_norm": 6.086155414581299,
1711
+ "learning_rate": 1.6995833333333334e-05,
1712
+ "loss": 0.2024,
1713
+ "step": 5925
1714
+ },
1715
+ {
1716
+ "epoch": 0.595,
1717
+ "grad_norm": 3.8740174770355225,
1718
+ "learning_rate": 1.6891666666666663e-05,
1719
+ "loss": 0.1934,
1720
+ "step": 5950
1721
+ },
1722
+ {
1723
+ "epoch": 0.5975,
1724
+ "grad_norm": 4.5182881355285645,
1725
+ "learning_rate": 1.6787499999999998e-05,
1726
+ "loss": 0.1699,
1727
+ "step": 5975
1728
+ },
1729
+ {
1730
+ "epoch": 0.6,
1731
+ "grad_norm": 3.7333216667175293,
1732
+ "learning_rate": 1.6683333333333333e-05,
1733
+ "loss": 0.1582,
1734
+ "step": 6000
1735
+ },
1736
+ {
1737
+ "epoch": 0.6,
1738
+ "eval_loss": 0.36108532547950745,
1739
+ "eval_runtime": 60.9789,
1740
+ "eval_samples_per_second": 34.504,
1741
+ "eval_steps_per_second": 2.165,
1742
+ "eval_wer": 17.977002898008788,
1743
+ "step": 6000
1744
+ },
1745
+ {
1746
+ "epoch": 0.6025,
1747
+ "grad_norm": 3.5465595722198486,
1748
+ "learning_rate": 1.6579166666666665e-05,
1749
+ "loss": 0.1487,
1750
+ "step": 6025
1751
+ },
1752
+ {
1753
+ "epoch": 0.605,
1754
+ "grad_norm": 3.182589530944824,
1755
+ "learning_rate": 1.6475e-05,
1756
+ "loss": 0.1345,
1757
+ "step": 6050
1758
+ },
1759
+ {
1760
+ "epoch": 0.6075,
1761
+ "grad_norm": 2.878831148147583,
1762
+ "learning_rate": 1.6370833333333333e-05,
1763
+ "loss": 0.1197,
1764
+ "step": 6075
1765
+ },
1766
+ {
1767
+ "epoch": 0.61,
1768
+ "grad_norm": 2.519314765930176,
1769
+ "learning_rate": 1.6266666666666665e-05,
1770
+ "loss": 0.1115,
1771
+ "step": 6100
1772
+ },
1773
+ {
1774
+ "epoch": 0.6125,
1775
+ "grad_norm": 3.164379596710205,
1776
+ "learning_rate": 1.61625e-05,
1777
+ "loss": 0.1144,
1778
+ "step": 6125
1779
+ },
1780
+ {
1781
+ "epoch": 0.615,
1782
+ "grad_norm": 3.2751474380493164,
1783
+ "learning_rate": 1.6058333333333332e-05,
1784
+ "loss": 0.1295,
1785
+ "step": 6150
1786
+ },
1787
+ {
1788
+ "epoch": 0.6175,
1789
+ "grad_norm": 3.138570785522461,
1790
+ "learning_rate": 1.5954166666666667e-05,
1791
+ "loss": 0.128,
1792
+ "step": 6175
1793
+ },
1794
+ {
1795
+ "epoch": 0.62,
1796
+ "grad_norm": 4.330804347991943,
1797
+ "learning_rate": 1.585e-05,
1798
+ "loss": 0.1287,
1799
+ "step": 6200
1800
+ },
1801
+ {
1802
+ "epoch": 0.6225,
1803
+ "grad_norm": 3.6639904975891113,
1804
+ "learning_rate": 1.574583333333333e-05,
1805
+ "loss": 0.1225,
1806
+ "step": 6225
1807
+ },
1808
+ {
1809
+ "epoch": 0.625,
1810
+ "grad_norm": 3.540968179702759,
1811
+ "learning_rate": 1.5641666666666666e-05,
1812
+ "loss": 0.1148,
1813
+ "step": 6250
1814
+ },
1815
+ {
1816
+ "epoch": 0.6275,
1817
+ "grad_norm": 3.4403693675994873,
1818
+ "learning_rate": 1.5537499999999998e-05,
1819
+ "loss": 0.1325,
1820
+ "step": 6275
1821
+ },
1822
+ {
1823
+ "epoch": 0.63,
1824
+ "grad_norm": 3.9871201515197754,
1825
+ "learning_rate": 1.5433333333333334e-05,
1826
+ "loss": 0.1443,
1827
+ "step": 6300
1828
+ },
1829
+ {
1830
+ "epoch": 0.6325,
1831
+ "grad_norm": 3.233175039291382,
1832
+ "learning_rate": 1.5329166666666665e-05,
1833
+ "loss": 0.1955,
1834
+ "step": 6325
1835
+ },
1836
+ {
1837
+ "epoch": 0.635,
1838
+ "grad_norm": 3.86395525932312,
1839
+ "learning_rate": 1.5224999999999999e-05,
1840
+ "loss": 0.1768,
1841
+ "step": 6350
1842
+ },
1843
+ {
1844
+ "epoch": 0.6375,
1845
+ "grad_norm": 3.179206609725952,
1846
+ "learning_rate": 1.5120833333333331e-05,
1847
+ "loss": 0.1644,
1848
+ "step": 6375
1849
+ },
1850
+ {
1851
+ "epoch": 0.64,
1852
+ "grad_norm": 2.821089267730713,
1853
+ "learning_rate": 1.5016666666666665e-05,
1854
+ "loss": 0.1247,
1855
+ "step": 6400
1856
+ },
1857
+ {
1858
+ "epoch": 0.6425,
1859
+ "grad_norm": 2.4977850914001465,
1860
+ "learning_rate": 1.4912499999999998e-05,
1861
+ "loss": 0.1133,
1862
+ "step": 6425
1863
+ },
1864
+ {
1865
+ "epoch": 0.645,
1866
+ "grad_norm": 4.838348388671875,
1867
+ "learning_rate": 1.4808333333333332e-05,
1868
+ "loss": 0.1097,
1869
+ "step": 6450
1870
+ },
1871
+ {
1872
+ "epoch": 0.6475,
1873
+ "grad_norm": 3.5508921146392822,
1874
+ "learning_rate": 1.4704166666666666e-05,
1875
+ "loss": 0.1553,
1876
+ "step": 6475
1877
+ },
1878
+ {
1879
+ "epoch": 0.65,
1880
+ "grad_norm": 3.1777148246765137,
1881
+ "learning_rate": 1.4599999999999997e-05,
1882
+ "loss": 0.1492,
1883
+ "step": 6500
1884
+ },
1885
+ {
1886
+ "epoch": 0.6525,
1887
+ "grad_norm": 5.064118385314941,
1888
+ "learning_rate": 1.4495833333333331e-05,
1889
+ "loss": 0.1921,
1890
+ "step": 6525
1891
+ },
1892
+ {
1893
+ "epoch": 0.655,
1894
+ "grad_norm": 3.8920788764953613,
1895
+ "learning_rate": 1.4391666666666665e-05,
1896
+ "loss": 0.1769,
1897
+ "step": 6550
1898
+ },
1899
+ {
1900
+ "epoch": 0.6575,
1901
+ "grad_norm": 3.3840203285217285,
1902
+ "learning_rate": 1.4287499999999998e-05,
1903
+ "loss": 0.1772,
1904
+ "step": 6575
1905
+ },
1906
+ {
1907
+ "epoch": 0.66,
1908
+ "grad_norm": 3.4659571647644043,
1909
+ "learning_rate": 1.4183333333333332e-05,
1910
+ "loss": 0.155,
1911
+ "step": 6600
1912
+ },
1913
+ {
1914
+ "epoch": 0.6625,
1915
+ "grad_norm": 3.893953561782837,
1916
+ "learning_rate": 1.4079166666666666e-05,
1917
+ "loss": 0.1666,
1918
+ "step": 6625
1919
+ },
1920
+ {
1921
+ "epoch": 0.665,
1922
+ "grad_norm": 3.3748056888580322,
1923
+ "learning_rate": 1.3974999999999997e-05,
1924
+ "loss": 0.1967,
1925
+ "step": 6650
1926
+ },
1927
+ {
1928
+ "epoch": 0.6675,
1929
+ "grad_norm": 3.469231605529785,
1930
+ "learning_rate": 1.3870833333333331e-05,
1931
+ "loss": 0.1671,
1932
+ "step": 6675
1933
+ },
1934
+ {
1935
+ "epoch": 0.67,
1936
+ "grad_norm": 2.9588847160339355,
1937
+ "learning_rate": 1.3766666666666665e-05,
1938
+ "loss": 0.1613,
1939
+ "step": 6700
1940
+ },
1941
+ {
1942
+ "epoch": 0.6725,
1943
+ "grad_norm": 3.3315980434417725,
1944
+ "learning_rate": 1.3662499999999998e-05,
1945
+ "loss": 0.1157,
1946
+ "step": 6725
1947
+ },
1948
+ {
1949
+ "epoch": 0.675,
1950
+ "grad_norm": 4.094941139221191,
1951
+ "learning_rate": 1.3558333333333334e-05,
1952
+ "loss": 0.105,
1953
+ "step": 6750
1954
+ },
1955
+ {
1956
+ "epoch": 0.6775,
1957
+ "grad_norm": 3.8783822059631348,
1958
+ "learning_rate": 1.3454166666666664e-05,
1959
+ "loss": 0.1277,
1960
+ "step": 6775
1961
+ },
1962
+ {
1963
+ "epoch": 0.68,
1964
+ "grad_norm": 4.027767181396484,
1965
+ "learning_rate": 1.3349999999999998e-05,
1966
+ "loss": 0.2186,
1967
+ "step": 6800
1968
+ },
1969
+ {
1970
+ "epoch": 0.6825,
1971
+ "grad_norm": 6.057985305786133,
1972
+ "learning_rate": 1.3245833333333331e-05,
1973
+ "loss": 0.1943,
1974
+ "step": 6825
1975
+ },
1976
+ {
1977
+ "epoch": 0.685,
1978
+ "grad_norm": 5.209383964538574,
1979
+ "learning_rate": 1.3141666666666665e-05,
1980
+ "loss": 0.2008,
1981
+ "step": 6850
1982
+ },
1983
+ {
1984
+ "epoch": 0.6875,
1985
+ "grad_norm": 4.257080554962158,
1986
+ "learning_rate": 1.30375e-05,
1987
+ "loss": 0.1915,
1988
+ "step": 6875
1989
+ },
1990
+ {
1991
+ "epoch": 0.69,
1992
+ "grad_norm": 4.305874347686768,
1993
+ "learning_rate": 1.2933333333333334e-05,
1994
+ "loss": 0.1878,
1995
+ "step": 6900
1996
+ },
1997
+ {
1998
+ "epoch": 0.6925,
1999
+ "grad_norm": 3.4165127277374268,
2000
+ "learning_rate": 1.2829166666666664e-05,
2001
+ "loss": 0.172,
2002
+ "step": 6925
2003
+ },
2004
+ {
2005
+ "epoch": 0.695,
2006
+ "grad_norm": 4.07374382019043,
2007
+ "learning_rate": 1.2724999999999998e-05,
2008
+ "loss": 0.1759,
2009
+ "step": 6950
2010
+ },
2011
+ {
2012
+ "epoch": 0.6975,
2013
+ "grad_norm": 4.26957368850708,
2014
+ "learning_rate": 1.2620833333333333e-05,
2015
+ "loss": 0.1943,
2016
+ "step": 6975
2017
+ },
2018
+ {
2019
+ "epoch": 0.7,
2020
+ "grad_norm": 4.227268218994141,
2021
+ "learning_rate": 1.2516666666666667e-05,
2022
+ "loss": 0.1848,
2023
+ "step": 7000
2024
+ },
2025
+ {
2026
+ "epoch": 0.7,
2027
+ "eval_loss": 0.35591790080070496,
2028
+ "eval_runtime": 58.3501,
2029
+ "eval_samples_per_second": 36.058,
2030
+ "eval_steps_per_second": 2.262,
2031
+ "eval_wer": 16.677573151350845,
2032
+ "step": 7000
2033
+ },
2034
+ {
2035
+ "epoch": 0.7025,
2036
+ "grad_norm": 7.228043079376221,
2037
+ "learning_rate": 1.2416666666666666e-05,
2038
+ "loss": 0.3395,
2039
+ "step": 7025
2040
+ },
2041
+ {
2042
+ "epoch": 0.705,
2043
+ "grad_norm": 8.51174259185791,
2044
+ "learning_rate": 1.2312499999999998e-05,
2045
+ "loss": 0.5988,
2046
+ "step": 7050
2047
+ },
2048
+ {
2049
+ "epoch": 0.7075,
2050
+ "grad_norm": 5.47458553314209,
2051
+ "learning_rate": 1.2208333333333331e-05,
2052
+ "loss": 0.5235,
2053
+ "step": 7075
2054
+ },
2055
+ {
2056
+ "epoch": 0.71,
2057
+ "grad_norm": 4.297708511352539,
2058
+ "learning_rate": 1.2104166666666665e-05,
2059
+ "loss": 0.4329,
2060
+ "step": 7100
2061
+ },
2062
+ {
2063
+ "epoch": 0.7125,
2064
+ "grad_norm": 4.446761608123779,
2065
+ "learning_rate": 1.1999999999999999e-05,
2066
+ "loss": 0.238,
2067
+ "step": 7125
2068
+ },
2069
+ {
2070
+ "epoch": 0.715,
2071
+ "grad_norm": 4.935601711273193,
2072
+ "learning_rate": 1.1895833333333332e-05,
2073
+ "loss": 0.1848,
2074
+ "step": 7150
2075
+ },
2076
+ {
2077
+ "epoch": 0.7175,
2078
+ "grad_norm": 3.1769227981567383,
2079
+ "learning_rate": 1.1791666666666666e-05,
2080
+ "loss": 0.1695,
2081
+ "step": 7175
2082
+ },
2083
+ {
2084
+ "epoch": 0.72,
2085
+ "grad_norm": 3.629225492477417,
2086
+ "learning_rate": 1.1687499999999998e-05,
2087
+ "loss": 0.1313,
2088
+ "step": 7200
2089
+ },
2090
+ {
2091
+ "epoch": 0.7225,
2092
+ "grad_norm": 2.838541269302368,
2093
+ "learning_rate": 1.1583333333333331e-05,
2094
+ "loss": 0.1274,
2095
+ "step": 7225
2096
+ },
2097
+ {
2098
+ "epoch": 0.725,
2099
+ "grad_norm": 2.8158419132232666,
2100
+ "learning_rate": 1.1479166666666665e-05,
2101
+ "loss": 0.1372,
2102
+ "step": 7250
2103
+ },
2104
+ {
2105
+ "epoch": 0.7275,
2106
+ "grad_norm": 2.6257667541503906,
2107
+ "learning_rate": 1.1374999999999999e-05,
2108
+ "loss": 0.1132,
2109
+ "step": 7275
2110
+ },
2111
+ {
2112
+ "epoch": 0.73,
2113
+ "grad_norm": 2.1429176330566406,
2114
+ "learning_rate": 1.1270833333333332e-05,
2115
+ "loss": 0.0966,
2116
+ "step": 7300
2117
+ },
2118
+ {
2119
+ "epoch": 0.7325,
2120
+ "grad_norm": 2.7238330841064453,
2121
+ "learning_rate": 1.1166666666666664e-05,
2122
+ "loss": 0.1008,
2123
+ "step": 7325
2124
+ },
2125
+ {
2126
+ "epoch": 0.735,
2127
+ "grad_norm": 4.3870344161987305,
2128
+ "learning_rate": 1.1062499999999998e-05,
2129
+ "loss": 0.1323,
2130
+ "step": 7350
2131
+ },
2132
+ {
2133
+ "epoch": 0.7375,
2134
+ "grad_norm": 3.9880590438842773,
2135
+ "learning_rate": 1.0958333333333331e-05,
2136
+ "loss": 0.1818,
2137
+ "step": 7375
2138
+ },
2139
+ {
2140
+ "epoch": 0.74,
2141
+ "grad_norm": 5.648591995239258,
2142
+ "learning_rate": 1.0854166666666665e-05,
2143
+ "loss": 0.1446,
2144
+ "step": 7400
2145
+ },
2146
+ {
2147
+ "epoch": 0.7425,
2148
+ "grad_norm": 2.984696388244629,
2149
+ "learning_rate": 1.075e-05,
2150
+ "loss": 0.1677,
2151
+ "step": 7425
2152
+ },
2153
+ {
2154
+ "epoch": 0.745,
2155
+ "grad_norm": 3.2804365158081055,
2156
+ "learning_rate": 1.0645833333333334e-05,
2157
+ "loss": 0.1169,
2158
+ "step": 7450
2159
+ },
2160
+ {
2161
+ "epoch": 0.7475,
2162
+ "grad_norm": 2.6319210529327393,
2163
+ "learning_rate": 1.0541666666666664e-05,
2164
+ "loss": 0.1076,
2165
+ "step": 7475
2166
+ },
2167
+ {
2168
+ "epoch": 0.75,
2169
+ "grad_norm": 3.784388780593872,
2170
+ "learning_rate": 1.0437499999999998e-05,
2171
+ "loss": 0.1044,
2172
+ "step": 7500
2173
+ },
2174
+ {
2175
+ "epoch": 0.7525,
2176
+ "grad_norm": 4.933755397796631,
2177
+ "learning_rate": 1.0333333333333332e-05,
2178
+ "loss": 0.2042,
2179
+ "step": 7525
2180
+ },
2181
+ {
2182
+ "epoch": 0.755,
2183
+ "grad_norm": 5.344150543212891,
2184
+ "learning_rate": 1.0229166666666667e-05,
2185
+ "loss": 0.2641,
2186
+ "step": 7550
2187
+ },
2188
+ {
2189
+ "epoch": 0.7575,
2190
+ "grad_norm": 5.08501672744751,
2191
+ "learning_rate": 1.0125e-05,
2192
+ "loss": 0.293,
2193
+ "step": 7575
2194
+ },
2195
+ {
2196
+ "epoch": 0.76,
2197
+ "grad_norm": 2.6458065509796143,
2198
+ "learning_rate": 1.0020833333333334e-05,
2199
+ "loss": 0.1825,
2200
+ "step": 7600
2201
+ },
2202
+ {
2203
+ "epoch": 0.7625,
2204
+ "grad_norm": 4.469775199890137,
2205
+ "learning_rate": 9.916666666666664e-06,
2206
+ "loss": 0.1311,
2207
+ "step": 7625
2208
+ },
2209
+ {
2210
+ "epoch": 0.765,
2211
+ "grad_norm": 2.5928456783294678,
2212
+ "learning_rate": 9.8125e-06,
2213
+ "loss": 0.1084,
2214
+ "step": 7650
2215
+ },
2216
+ {
2217
+ "epoch": 0.7675,
2218
+ "grad_norm": 4.348841190338135,
2219
+ "learning_rate": 9.708333333333333e-06,
2220
+ "loss": 0.1447,
2221
+ "step": 7675
2222
+ },
2223
+ {
2224
+ "epoch": 0.77,
2225
+ "grad_norm": 4.078396797180176,
2226
+ "learning_rate": 9.604166666666667e-06,
2227
+ "loss": 0.1727,
2228
+ "step": 7700
2229
+ },
2230
+ {
2231
+ "epoch": 0.7725,
2232
+ "grad_norm": 3.949575185775757,
2233
+ "learning_rate": 9.5e-06,
2234
+ "loss": 0.1824,
2235
+ "step": 7725
2236
+ },
2237
+ {
2238
+ "epoch": 0.775,
2239
+ "grad_norm": 3.2387499809265137,
2240
+ "learning_rate": 9.39583333333333e-06,
2241
+ "loss": 0.1671,
2242
+ "step": 7750
2243
+ },
2244
+ {
2245
+ "epoch": 0.7775,
2246
+ "grad_norm": 3.390455722808838,
2247
+ "learning_rate": 9.291666666666666e-06,
2248
+ "loss": 0.1201,
2249
+ "step": 7775
2250
+ },
2251
+ {
2252
+ "epoch": 0.78,
2253
+ "grad_norm": 4.596331596374512,
2254
+ "learning_rate": 9.1875e-06,
2255
+ "loss": 0.1413,
2256
+ "step": 7800
2257
+ },
2258
+ {
2259
+ "epoch": 0.7825,
2260
+ "grad_norm": 3.470177412033081,
2261
+ "learning_rate": 9.083333333333333e-06,
2262
+ "loss": 0.3118,
2263
+ "step": 7825
2264
+ },
2265
+ {
2266
+ "epoch": 0.785,
2267
+ "grad_norm": 2.657711982727051,
2268
+ "learning_rate": 8.979166666666665e-06,
2269
+ "loss": 0.1523,
2270
+ "step": 7850
2271
+ },
2272
+ {
2273
+ "epoch": 0.7875,
2274
+ "grad_norm": 2.3193860054016113,
2275
+ "learning_rate": 8.874999999999999e-06,
2276
+ "loss": 0.1134,
2277
+ "step": 7875
2278
+ },
2279
+ {
2280
+ "epoch": 0.79,
2281
+ "grad_norm": 4.3279008865356445,
2282
+ "learning_rate": 8.770833333333333e-06,
2283
+ "loss": 0.1089,
2284
+ "step": 7900
2285
+ },
2286
+ {
2287
+ "epoch": 0.7925,
2288
+ "grad_norm": 2.435753107070923,
2289
+ "learning_rate": 8.666666666666666e-06,
2290
+ "loss": 0.1112,
2291
+ "step": 7925
2292
+ },
2293
+ {
2294
+ "epoch": 0.795,
2295
+ "grad_norm": 2.8667356967926025,
2296
+ "learning_rate": 8.5625e-06,
2297
+ "loss": 0.1072,
2298
+ "step": 7950
2299
+ },
2300
+ {
2301
+ "epoch": 0.7975,
2302
+ "grad_norm": 2.846033811569214,
2303
+ "learning_rate": 8.458333333333333e-06,
2304
+ "loss": 0.1151,
2305
+ "step": 7975
2306
+ },
2307
+ {
2308
+ "epoch": 0.8,
2309
+ "grad_norm": 3.3730928897857666,
2310
+ "learning_rate": 8.354166666666665e-06,
2311
+ "loss": 0.1434,
2312
+ "step": 8000
2313
+ },
2314
+ {
2315
+ "epoch": 0.8,
2316
+ "eval_loss": 0.300187349319458,
2317
+ "eval_runtime": 58.5676,
2318
+ "eval_samples_per_second": 35.924,
2319
+ "eval_steps_per_second": 2.254,
2320
+ "eval_wer": 14.985509956062447,
2321
+ "step": 8000
2322
+ },
2323
+ {
2324
+ "epoch": 0.8025,
2325
+ "grad_norm": 4.13847017288208,
2326
+ "learning_rate": 8.249999999999999e-06,
2327
+ "loss": 0.1658,
2328
+ "step": 8025
2329
+ },
2330
+ {
2331
+ "epoch": 0.805,
2332
+ "grad_norm": 3.6509456634521484,
2333
+ "learning_rate": 8.145833333333333e-06,
2334
+ "loss": 0.1818,
2335
+ "step": 8050
2336
+ },
2337
+ {
2338
+ "epoch": 0.8075,
2339
+ "grad_norm": 2.960130453109741,
2340
+ "learning_rate": 8.041666666666666e-06,
2341
+ "loss": 0.135,
2342
+ "step": 8075
2343
+ },
2344
+ {
2345
+ "epoch": 0.81,
2346
+ "grad_norm": 2.997581720352173,
2347
+ "learning_rate": 7.9375e-06,
2348
+ "loss": 0.1213,
2349
+ "step": 8100
2350
+ },
2351
+ {
2352
+ "epoch": 0.8125,
2353
+ "grad_norm": 2.4850475788116455,
2354
+ "learning_rate": 7.833333333333333e-06,
2355
+ "loss": 0.1052,
2356
+ "step": 8125
2357
+ },
2358
+ {
2359
+ "epoch": 0.815,
2360
+ "grad_norm": 3.6655027866363525,
2361
+ "learning_rate": 7.729166666666665e-06,
2362
+ "loss": 0.1054,
2363
+ "step": 8150
2364
+ },
2365
+ {
2366
+ "epoch": 0.8175,
2367
+ "grad_norm": 2.144341468811035,
2368
+ "learning_rate": 7.625e-06,
2369
+ "loss": 0.0934,
2370
+ "step": 8175
2371
+ },
2372
+ {
2373
+ "epoch": 0.82,
2374
+ "grad_norm": 3.284132242202759,
2375
+ "learning_rate": 7.520833333333332e-06,
2376
+ "loss": 0.0762,
2377
+ "step": 8200
2378
+ },
2379
+ {
2380
+ "epoch": 0.8225,
2381
+ "grad_norm": 2.597266912460327,
2382
+ "learning_rate": 7.416666666666666e-06,
2383
+ "loss": 0.0982,
2384
+ "step": 8225
2385
+ },
2386
+ {
2387
+ "epoch": 0.825,
2388
+ "grad_norm": 3.4222335815429688,
2389
+ "learning_rate": 7.3125e-06,
2390
+ "loss": 0.0851,
2391
+ "step": 8250
2392
+ },
2393
+ {
2394
+ "epoch": 0.8275,
2395
+ "grad_norm": 2.741823434829712,
2396
+ "learning_rate": 7.208333333333333e-06,
2397
+ "loss": 0.092,
2398
+ "step": 8275
2399
+ },
2400
+ {
2401
+ "epoch": 0.83,
2402
+ "grad_norm": 2.2585489749908447,
2403
+ "learning_rate": 7.104166666666666e-06,
2404
+ "loss": 0.0948,
2405
+ "step": 8300
2406
+ },
2407
+ {
2408
+ "epoch": 0.8325,
2409
+ "grad_norm": 3.675316572189331,
2410
+ "learning_rate": 7e-06,
2411
+ "loss": 0.1375,
2412
+ "step": 8325
2413
+ },
2414
+ {
2415
+ "epoch": 0.835,
2416
+ "grad_norm": 4.135271072387695,
2417
+ "learning_rate": 6.895833333333333e-06,
2418
+ "loss": 0.1713,
2419
+ "step": 8350
2420
+ },
2421
+ {
2422
+ "epoch": 0.8375,
2423
+ "grad_norm": 4.943787097930908,
2424
+ "learning_rate": 6.791666666666666e-06,
2425
+ "loss": 0.2061,
2426
+ "step": 8375
2427
+ },
2428
+ {
2429
+ "epoch": 0.84,
2430
+ "grad_norm": 2.7876579761505127,
2431
+ "learning_rate": 6.6875e-06,
2432
+ "loss": 0.1586,
2433
+ "step": 8400
2434
+ },
2435
+ {
2436
+ "epoch": 0.8425,
2437
+ "grad_norm": 3.986652135848999,
2438
+ "learning_rate": 6.583333333333333e-06,
2439
+ "loss": 0.1148,
2440
+ "step": 8425
2441
+ },
2442
+ {
2443
+ "epoch": 0.845,
2444
+ "grad_norm": 2.5285580158233643,
2445
+ "learning_rate": 6.479166666666666e-06,
2446
+ "loss": 0.1098,
2447
+ "step": 8450
2448
+ },
2449
+ {
2450
+ "epoch": 0.8475,
2451
+ "grad_norm": 3.109323263168335,
2452
+ "learning_rate": 6.375e-06,
2453
+ "loss": 0.1222,
2454
+ "step": 8475
2455
+ },
2456
+ {
2457
+ "epoch": 0.85,
2458
+ "grad_norm": 3.02284574508667,
2459
+ "learning_rate": 6.270833333333333e-06,
2460
+ "loss": 0.1371,
2461
+ "step": 8500
2462
+ },
2463
+ {
2464
+ "epoch": 0.8525,
2465
+ "grad_norm": 3.8272876739501953,
2466
+ "learning_rate": 6.166666666666666e-06,
2467
+ "loss": 0.1406,
2468
+ "step": 8525
2469
+ },
2470
+ {
2471
+ "epoch": 0.855,
2472
+ "grad_norm": 5.428800106048584,
2473
+ "learning_rate": 6.062499999999999e-06,
2474
+ "loss": 0.1932,
2475
+ "step": 8550
2476
+ },
2477
+ {
2478
+ "epoch": 0.8575,
2479
+ "grad_norm": 5.56389045715332,
2480
+ "learning_rate": 5.958333333333333e-06,
2481
+ "loss": 0.3211,
2482
+ "step": 8575
2483
+ },
2484
+ {
2485
+ "epoch": 0.86,
2486
+ "grad_norm": 7.038808822631836,
2487
+ "learning_rate": 5.854166666666666e-06,
2488
+ "loss": 0.4388,
2489
+ "step": 8600
2490
+ },
2491
+ {
2492
+ "epoch": 0.8625,
2493
+ "grad_norm": 7.0381245613098145,
2494
+ "learning_rate": 5.749999999999999e-06,
2495
+ "loss": 0.515,
2496
+ "step": 8625
2497
+ },
2498
+ {
2499
+ "epoch": 0.865,
2500
+ "grad_norm": 3.0722436904907227,
2501
+ "learning_rate": 5.645833333333333e-06,
2502
+ "loss": 0.3093,
2503
+ "step": 8650
2504
+ },
2505
+ {
2506
+ "epoch": 0.8675,
2507
+ "grad_norm": 4.79665470123291,
2508
+ "learning_rate": 5.541666666666666e-06,
2509
+ "loss": 0.2125,
2510
+ "step": 8675
2511
+ },
2512
+ {
2513
+ "epoch": 0.87,
2514
+ "grad_norm": 5.695593357086182,
2515
+ "learning_rate": 5.437499999999999e-06,
2516
+ "loss": 0.2446,
2517
+ "step": 8700
2518
+ },
2519
+ {
2520
+ "epoch": 0.8725,
2521
+ "grad_norm": 3.4895339012145996,
2522
+ "learning_rate": 5.333333333333333e-06,
2523
+ "loss": 0.1659,
2524
+ "step": 8725
2525
+ },
2526
+ {
2527
+ "epoch": 0.875,
2528
+ "grad_norm": 2.6607508659362793,
2529
+ "learning_rate": 5.2291666666666664e-06,
2530
+ "loss": 0.1084,
2531
+ "step": 8750
2532
+ },
2533
+ {
2534
+ "epoch": 0.8775,
2535
+ "grad_norm": 2.7779884338378906,
2536
+ "learning_rate": 5.124999999999999e-06,
2537
+ "loss": 0.1082,
2538
+ "step": 8775
2539
+ },
2540
+ {
2541
+ "epoch": 0.88,
2542
+ "grad_norm": 3.051637887954712,
2543
+ "learning_rate": 5.020833333333333e-06,
2544
+ "loss": 0.1218,
2545
+ "step": 8800
2546
+ },
2547
+ {
2548
+ "epoch": 0.8825,
2549
+ "grad_norm": 3.9986276626586914,
2550
+ "learning_rate": 4.9166666666666665e-06,
2551
+ "loss": 0.1534,
2552
+ "step": 8825
2553
+ },
2554
+ {
2555
+ "epoch": 0.885,
2556
+ "grad_norm": 3.7295081615448,
2557
+ "learning_rate": 4.812499999999999e-06,
2558
+ "loss": 0.1498,
2559
+ "step": 8850
2560
+ },
2561
+ {
2562
+ "epoch": 0.8875,
2563
+ "grad_norm": 3.2010765075683594,
2564
+ "learning_rate": 4.708333333333333e-06,
2565
+ "loss": 0.1514,
2566
+ "step": 8875
2567
+ },
2568
+ {
2569
+ "epoch": 0.89,
2570
+ "grad_norm": 3.19004487991333,
2571
+ "learning_rate": 4.6041666666666665e-06,
2572
+ "loss": 0.1095,
2573
+ "step": 8900
2574
+ },
2575
+ {
2576
+ "epoch": 0.8925,
2577
+ "grad_norm": 3.772831916809082,
2578
+ "learning_rate": 4.499999999999999e-06,
2579
+ "loss": 0.1066,
2580
+ "step": 8925
2581
+ },
2582
+ {
2583
+ "epoch": 0.895,
2584
+ "grad_norm": 2.938344717025757,
2585
+ "learning_rate": 4.395833333333333e-06,
2586
+ "loss": 0.1156,
2587
+ "step": 8950
2588
+ },
2589
+ {
2590
+ "epoch": 0.8975,
2591
+ "grad_norm": 3.13283109664917,
2592
+ "learning_rate": 4.2916666666666665e-06,
2593
+ "loss": 0.0922,
2594
+ "step": 8975
2595
+ },
2596
+ {
2597
+ "epoch": 0.9,
2598
+ "grad_norm": 2.813206672668457,
2599
+ "learning_rate": 4.187499999999999e-06,
2600
+ "loss": 0.0951,
2601
+ "step": 9000
2602
+ },
2603
+ {
2604
+ "epoch": 0.9,
2605
+ "eval_loss": 0.2976318597793579,
2606
+ "eval_runtime": 59.2686,
2607
+ "eval_samples_per_second": 35.499,
2608
+ "eval_steps_per_second": 2.227,
2609
+ "eval_wer": 15.294007665700663,
2610
+ "step": 9000
2611
+ },
2612
+ {
2613
+ "epoch": 0.9025,
2614
+ "grad_norm": 3.3851749897003174,
2615
+ "learning_rate": 4.083333333333333e-06,
2616
+ "loss": 0.1113,
2617
+ "step": 9025
2618
+ },
2619
+ {
2620
+ "epoch": 0.905,
2621
+ "grad_norm": 3.7882187366485596,
2622
+ "learning_rate": 3.9791666666666665e-06,
2623
+ "loss": 0.1345,
2624
+ "step": 9050
2625
+ },
2626
+ {
2627
+ "epoch": 0.9075,
2628
+ "grad_norm": 4.723577976226807,
2629
+ "learning_rate": 3.874999999999999e-06,
2630
+ "loss": 0.1739,
2631
+ "step": 9075
2632
+ },
2633
+ {
2634
+ "epoch": 0.91,
2635
+ "grad_norm": 3.7890665531158447,
2636
+ "learning_rate": 3.770833333333333e-06,
2637
+ "loss": 0.173,
2638
+ "step": 9100
2639
+ },
2640
+ {
2641
+ "epoch": 0.9125,
2642
+ "grad_norm": 3.224851608276367,
2643
+ "learning_rate": 3.6666666666666666e-06,
2644
+ "loss": 0.1381,
2645
+ "step": 9125
2646
+ },
2647
+ {
2648
+ "epoch": 0.915,
2649
+ "grad_norm": 2.4666051864624023,
2650
+ "learning_rate": 3.5624999999999998e-06,
2651
+ "loss": 0.1291,
2652
+ "step": 9150
2653
+ },
2654
+ {
2655
+ "epoch": 0.9175,
2656
+ "grad_norm": 3.090360403060913,
2657
+ "learning_rate": 3.458333333333333e-06,
2658
+ "loss": 0.1249,
2659
+ "step": 9175
2660
+ },
2661
+ {
2662
+ "epoch": 0.92,
2663
+ "grad_norm": 4.420276641845703,
2664
+ "learning_rate": 3.354166666666666e-06,
2665
+ "loss": 0.1292,
2666
+ "step": 9200
2667
+ },
2668
+ {
2669
+ "epoch": 0.9225,
2670
+ "grad_norm": 4.0348663330078125,
2671
+ "learning_rate": 3.25e-06,
2672
+ "loss": 0.1508,
2673
+ "step": 9225
2674
+ },
2675
+ {
2676
+ "epoch": 0.925,
2677
+ "grad_norm": 4.426786422729492,
2678
+ "learning_rate": 3.145833333333333e-06,
2679
+ "loss": 0.1749,
2680
+ "step": 9250
2681
+ },
2682
+ {
2683
+ "epoch": 0.9275,
2684
+ "grad_norm": 3.2825982570648193,
2685
+ "learning_rate": 3.041666666666666e-06,
2686
+ "loss": 0.1932,
2687
+ "step": 9275
2688
+ },
2689
+ {
2690
+ "epoch": 0.93,
2691
+ "grad_norm": 2.628441572189331,
2692
+ "learning_rate": 2.9375e-06,
2693
+ "loss": 0.1182,
2694
+ "step": 9300
2695
+ },
2696
+ {
2697
+ "epoch": 0.9325,
2698
+ "grad_norm": 2.464374303817749,
2699
+ "learning_rate": 2.833333333333333e-06,
2700
+ "loss": 0.1196,
2701
+ "step": 9325
2702
+ },
2703
+ {
2704
+ "epoch": 0.935,
2705
+ "grad_norm": 2.491689682006836,
2706
+ "learning_rate": 2.7291666666666662e-06,
2707
+ "loss": 0.0968,
2708
+ "step": 9350
2709
+ },
2710
+ {
2711
+ "epoch": 0.9375,
2712
+ "grad_norm": 3.4698681831359863,
2713
+ "learning_rate": 2.625e-06,
2714
+ "loss": 0.1251,
2715
+ "step": 9375
2716
+ },
2717
+ {
2718
+ "epoch": 0.94,
2719
+ "grad_norm": 3.9469587802886963,
2720
+ "learning_rate": 2.520833333333333e-06,
2721
+ "loss": 0.1507,
2722
+ "step": 9400
2723
+ },
2724
+ {
2725
+ "epoch": 0.9425,
2726
+ "grad_norm": 3.5354082584381104,
2727
+ "learning_rate": 2.4166666666666663e-06,
2728
+ "loss": 0.169,
2729
+ "step": 9425
2730
+ },
2731
+ {
2732
+ "epoch": 0.945,
2733
+ "grad_norm": 2.7507169246673584,
2734
+ "learning_rate": 2.3125e-06,
2735
+ "loss": 0.2939,
2736
+ "step": 9450
2737
+ },
2738
+ {
2739
+ "epoch": 0.9475,
2740
+ "grad_norm": 3.2346575260162354,
2741
+ "learning_rate": 2.208333333333333e-06,
2742
+ "loss": 0.1602,
2743
+ "step": 9475
2744
+ },
2745
+ {
2746
+ "epoch": 0.95,
2747
+ "grad_norm": 4.097684860229492,
2748
+ "learning_rate": 2.1041666666666667e-06,
2749
+ "loss": 0.134,
2750
+ "step": 9500
2751
+ },
2752
+ {
2753
+ "epoch": 0.9525,
2754
+ "grad_norm": 4.1434855461120605,
2755
+ "learning_rate": 2e-06,
2756
+ "loss": 0.1553,
2757
+ "step": 9525
2758
+ },
2759
+ {
2760
+ "epoch": 0.955,
2761
+ "grad_norm": 3.8769595623016357,
2762
+ "learning_rate": 1.8958333333333331e-06,
2763
+ "loss": 0.171,
2764
+ "step": 9550
2765
+ },
2766
+ {
2767
+ "epoch": 0.9575,
2768
+ "grad_norm": 4.308934211730957,
2769
+ "learning_rate": 1.7916666666666665e-06,
2770
+ "loss": 0.1935,
2771
+ "step": 9575
2772
+ },
2773
+ {
2774
+ "epoch": 0.96,
2775
+ "grad_norm": 3.0821316242218018,
2776
+ "learning_rate": 1.6874999999999997e-06,
2777
+ "loss": 0.1496,
2778
+ "step": 9600
2779
+ },
2780
+ {
2781
+ "epoch": 0.9625,
2782
+ "grad_norm": 4.086252689361572,
2783
+ "learning_rate": 1.5833333333333331e-06,
2784
+ "loss": 0.1223,
2785
+ "step": 9625
2786
+ },
2787
+ {
2788
+ "epoch": 0.965,
2789
+ "grad_norm": 2.3455817699432373,
2790
+ "learning_rate": 1.4791666666666663e-06,
2791
+ "loss": 0.0933,
2792
+ "step": 9650
2793
+ },
2794
+ {
2795
+ "epoch": 0.9675,
2796
+ "grad_norm": 2.302103042602539,
2797
+ "learning_rate": 1.375e-06,
2798
+ "loss": 0.0959,
2799
+ "step": 9675
2800
+ },
2801
+ {
2802
+ "epoch": 0.97,
2803
+ "grad_norm": 2.8981809616088867,
2804
+ "learning_rate": 1.2708333333333334e-06,
2805
+ "loss": 0.0963,
2806
+ "step": 9700
2807
+ },
2808
+ {
2809
+ "epoch": 0.9725,
2810
+ "grad_norm": 1.89694082736969,
2811
+ "learning_rate": 1.1666666666666666e-06,
2812
+ "loss": 0.096,
2813
+ "step": 9725
2814
+ },
2815
+ {
2816
+ "epoch": 0.975,
2817
+ "grad_norm": 2.363546371459961,
2818
+ "learning_rate": 1.0624999999999998e-06,
2819
+ "loss": 0.1005,
2820
+ "step": 9750
2821
+ },
2822
+ {
2823
+ "epoch": 0.9775,
2824
+ "grad_norm": 2.9393630027770996,
2825
+ "learning_rate": 9.583333333333334e-07,
2826
+ "loss": 0.11,
2827
+ "step": 9775
2828
+ },
2829
+ {
2830
+ "epoch": 0.98,
2831
+ "grad_norm": 2.824051856994629,
2832
+ "learning_rate": 8.541666666666666e-07,
2833
+ "loss": 0.153,
2834
+ "step": 9800
2835
+ },
2836
+ {
2837
+ "epoch": 0.9825,
2838
+ "grad_norm": 3.817542552947998,
2839
+ "learning_rate": 7.499999999999999e-07,
2840
+ "loss": 0.1647,
2841
+ "step": 9825
2842
+ },
2843
+ {
2844
+ "epoch": 0.985,
2845
+ "grad_norm": 3.506502151489258,
2846
+ "learning_rate": 6.458333333333332e-07,
2847
+ "loss": 0.1499,
2848
+ "step": 9850
2849
+ },
2850
+ {
2851
+ "epoch": 0.9875,
2852
+ "grad_norm": 2.9996325969696045,
2853
+ "learning_rate": 5.416666666666666e-07,
2854
+ "loss": 0.148,
2855
+ "step": 9875
2856
+ },
2857
+ {
2858
+ "epoch": 0.99,
2859
+ "grad_norm": 6.828978538513184,
2860
+ "learning_rate": 4.375e-07,
2861
+ "loss": 0.2303,
2862
+ "step": 9900
2863
+ },
2864
+ {
2865
+ "epoch": 0.9925,
2866
+ "grad_norm": 2.7112486362457275,
2867
+ "learning_rate": 3.333333333333333e-07,
2868
+ "loss": 0.195,
2869
+ "step": 9925
2870
+ },
2871
+ {
2872
+ "epoch": 0.995,
2873
+ "grad_norm": 3.023608684539795,
2874
+ "learning_rate": 2.2916666666666666e-07,
2875
+ "loss": 0.106,
2876
+ "step": 9950
2877
+ },
2878
+ {
2879
+ "epoch": 0.9975,
2880
+ "grad_norm": 2.6858067512512207,
2881
+ "learning_rate": 1.25e-07,
2882
+ "loss": 0.1,
2883
+ "step": 9975
2884
+ },
2885
+ {
2886
+ "epoch": 1.0,
2887
+ "grad_norm": 2.3674516677856445,
2888
+ "learning_rate": 2.083333333333333e-08,
2889
+ "loss": 0.106,
2890
+ "step": 10000
2891
+ },
2892
+ {
2893
+ "epoch": 1.0,
2894
+ "eval_loss": 0.2991788983345032,
2895
+ "eval_runtime": 60.4166,
2896
+ "eval_samples_per_second": 34.825,
2897
+ "eval_steps_per_second": 2.185,
2898
+ "eval_wer": 15.72403477610545,
2899
+ "step": 10000
2900
+ },
2901
+ {
2902
+ "epoch": 1.0,
2903
+ "step": 10000,
2904
+ "total_flos": 7.8780432384e+18,
2905
+ "train_loss": 0.24547564173936845,
2906
+ "train_runtime": 3924.8092,
2907
+ "train_samples_per_second": 81.533,
2908
+ "train_steps_per_second": 2.548
2909
+ }
2910
+ ],
2911
+ "logging_steps": 25,
2912
+ "max_steps": 10000,
2913
+ "num_input_tokens_seen": 0,
2914
+ "num_train_epochs": 9223372036854775807,
2915
+ "save_steps": 1000,
2916
+ "stateful_callbacks": {
2917
+ "TrainerControl": {
2918
+ "args": {
2919
+ "should_epoch_stop": false,
2920
+ "should_evaluate": false,
2921
+ "should_log": false,
2922
+ "should_save": true,
2923
+ "should_training_stop": true
2924
+ },
2925
+ "attributes": {}
2926
+ }
2927
+ },
2928
+ "total_flos": 7.8780432384e+18,
2929
+ "train_batch_size": 32,
2930
+ "trial_name": null,
2931
+ "trial_params": null
2932
+ }
wandb/run-20250217_214618-7bygcjmf/files/output.log CHANGED
@@ -1901,3 +1901,161 @@ Training completed. Do not forget to share your model on huggingface.co/models =
1901
  [INFO|feature_extraction_utils.py:437] 2025-02-17 22:51:55,409 >> Feature extractor saved in ./preprocessor_config.json
1902
  [INFO|modelcard.py:449] 2025-02-17 22:51:55,555 >> Dropping the following result as it does not have all the necessary fields:
1903
  {'task': {'name': 'Automatic Speech Recognition', 'type': 'automatic-speech-recognition'}, 'metrics': [{'name': 'Wer', 'type': 'wer', 'value': 15.72403477610545}]}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1901
  [INFO|feature_extraction_utils.py:437] 2025-02-17 22:51:55,409 >> Feature extractor saved in ./preprocessor_config.json
1902
  [INFO|modelcard.py:449] 2025-02-17 22:51:55,555 >> Dropping the following result as it does not have all the necessary fields:
1903
  {'task': {'name': 'Automatic Speech Recognition', 'type': 'automatic-speech-recognition'}, 'metrics': [{'name': 'Wer', 'type': 'wer', 'value': 15.72403477610545}]}
1904
+ ***** train metrics *****
1905
+ epoch = 1.0
1906
+ total_flos = 7336999511GF
1907
+ train_loss = 0.2455
1908
+ train_runtime = 1:05:24.80
1909
+ train_samples_per_second = 81.533
1910
+ train_steps_per_second = 2.548
1911
+ 02/17/2025 22:52:00 - INFO - __main__ - *** Evaluate ***
1912
+ [INFO|trainer.py:4258] 2025-02-17 22:52:00,618 >>
1913
+ ***** Running Evaluation *****
1914
+ [INFO|trainer.py:4262] 2025-02-17 22:52:00,618 >> Num examples: Unknown
1915
+ [INFO|trainer.py:4263] 2025-02-17 22:52:00,618 >> Batch size = 16
1916
+ [INFO|trainer_utils.py:837] 2025-02-17 22:52:07,406 >> The following columns in the evaluation set don't have a corresponding argument in `WhisperForConditionalGeneration.forward` and have been ignored: input_length. If input_length are not expected by `WhisperForConditionalGeneration.forward`, you can safely ignore this message.
1917
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:07,558 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1918
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:07,971 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1919
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:08,460 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1920
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:08,998 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1921
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:09,391 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1922
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:09,739 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1923
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:10,053 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1924
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:10,390 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1925
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:10,747 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1926
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:11,158 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1927
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:11,489 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1928
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:11,920 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1929
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:12,311 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1930
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:12,740 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1931
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:13,149 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1932
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:13,473 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1933
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:13,756 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1934
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:14,117 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1935
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:14,472 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1936
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:14,777 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1937
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:15,180 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1938
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:15,582 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1939
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:15,959 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1940
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:16,331 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1941
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:16,652 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1942
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:17,044 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1943
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:17,423 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1944
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:17,858 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1945
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:18,193 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1946
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:18,522 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1947
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:18,963 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1948
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:19,333 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1949
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:19,737 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1950
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:20,033 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1951
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:20,365 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1952
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:20,686 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1953
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:20,973 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1954
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:21,303 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1955
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:21,617 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1956
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:21,910 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1957
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:22,221 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1958
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:22,523 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1959
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:22,801 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1960
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:23,099 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1961
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:23,388 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1962
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:23,728 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1963
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:24,027 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1964
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:24,309 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1965
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:24,703 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1966
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:25,003 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1967
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:25,312 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1968
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:25,620 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1969
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:25,884 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1970
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:26,185 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1971
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:26,482 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1972
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:26,815 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1973
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:27,073 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1974
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:27,339 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1975
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:27,654 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1976
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:27,920 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1977
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:28,245 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1978
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:28,534 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1979
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:28,844 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1980
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:29,140 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1981
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:29,396 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1982
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:29,640 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1983
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:29,941 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1984
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:30,234 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1985
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:30,533 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1986
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:30,817 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1987
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:31,106 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1988
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:31,443 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1989
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:31,731 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1990
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:32,072 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1991
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:32,372 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1992
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:32,682 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1993
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:32,944 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1994
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:33,233 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1995
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:33,533 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1996
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:33,814 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1997
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:34,097 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1998
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:34,373 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
1999
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:34,669 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2000
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:34,984 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2001
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:35,296 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2002
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:35,573 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2003
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:35,871 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2004
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:36,225 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2005
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:36,541 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2006
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:36,910 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2007
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:37,225 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2008
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:37,535 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2009
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:37,824 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2010
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:38,106 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2011
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:38,452 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2012
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:38,768 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2013
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:39,069 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2014
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:39,373 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2015
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:39,677 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2016
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:39,986 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2017
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:40,291 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2018
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:40,622 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2019
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:40,924 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2020
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:41,251 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2021
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:41,603 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2022
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:41,908 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2023
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:42,225 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2024
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:42,565 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2025
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:42,853 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2026
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:43,138 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2027
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:43,452 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2028
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:43,769 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2029
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:44,059 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2030
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:44,328 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2031
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:44,620 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2032
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:44,899 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2033
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:45,215 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2034
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:45,514 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2035
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:45,807 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2036
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:46,100 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2037
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:46,406 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2038
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:46,683 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2039
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:46,992 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2040
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:47,301 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2041
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:47,584 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2042
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:47,862 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2043
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:48,146 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2044
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:48,450 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2045
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:48,741 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2046
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:49,038 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2047
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:49,299 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2048
+ [INFO|generation_whisper.py:1844] 2025-02-17 22:52:49,536 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
2049
+ ***** eval metrics *****
2050
+ epoch = 1.0
2051
+ eval_loss = 0.3002
2052
+ eval_runtime = 0:00:56.93
2053
+ eval_samples_per_second = 36.956
2054
+ eval_steps_per_second = 2.319
2055
+ eval_wer = 14.9855
2056
+ [INFO|trainer.py:3942] 2025-02-17 22:52:57,551 >> Saving model checkpoint to ./
2057
+ [INFO|configuration_utils.py:423] 2025-02-17 22:52:57,552 >> Configuration saved in ./config.json
2058
+ [INFO|configuration_utils.py:909] 2025-02-17 22:52:57,553 >> Configuration saved in ./generation_config.json
2059
+ [INFO|modeling_utils.py:3040] 2025-02-17 22:52:57,945 >> Model weights saved in ./model.safetensors
2060
+ [INFO|feature_extraction_utils.py:437] 2025-02-17 22:52:57,947 >> Feature extractor saved in ./preprocessor_config.json
2061
+ run-7bygcjmf.wandb: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 4.98M/4.98M [00:01<00:00, 3.58MB/s]
wandb/run-20250217_214618-7bygcjmf/run-7bygcjmf.wandb CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4b8a57613cf10725c6769a6e7ad801d52e9a486bfd327b974ae5e778d6cdd2a6
3
- size 4947968
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b24350895068d2eeaab4073bdf0d0a76ef0d5ec72269f30f06e8afe5fbb6315
3
+ size 4980736