metadata
language:
- cs
license: apache-2.0
base_model: openai/whisper-small
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper small + 2000 csen p5 concacat
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Prvni fine tuning spolecnych speakeru
type: mozilla-foundation/common_voice_11_0
args: 'config: csen, split: train'
metrics:
- name: Wer
type: wer
value: 32.2286109123214
Whisper small + 2000 csen p5 concacat
This model is a fine-tuned version of openai/whisper-small on the Prvni fine tuning spolecnych speakeru dataset. It achieves the following results on the evaluation set:
- Loss: 0.5955
- Wer: 32.2286
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 800
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.2369 | 1.09 | 200 | 0.5234 | 35.9820 |
0.0817 | 3.03 | 400 | 0.5461 | 35.6588 |
0.0192 | 4.12 | 600 | 0.5798 | 32.1176 |
0.011 | 6.06 | 800 | 0.5955 | 32.2286 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2