xbilek25's picture
End of training
aaa8c01 verified
metadata
language:
  - cs
license: apache-2.0
base_model: openai/whisper-small
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper small + 2000 csen p5 concacat
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Prvni fine tuning spolecnych speakeru
          type: mozilla-foundation/common_voice_11_0
          args: 'config: csen, split: train'
        metrics:
          - name: Wer
            type: wer
            value: 32.2286109123214

Whisper small + 2000 csen p5 concacat

This model is a fine-tuned version of openai/whisper-small on the Prvni fine tuning spolecnych speakeru dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5955
  • Wer: 32.2286

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 800
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2369 1.09 200 0.5234 35.9820
0.0817 3.03 400 0.5461 35.6588
0.0192 4.12 600 0.5798 32.1176
0.011 6.06 800 0.5955 32.2286

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2