xbilek25's picture
End of training
cfafcee verified
metadata
language:
  - multilingual
license: apache-2.0
base_model: openai/whisper-small
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: >-
      basic_train_basic_test 1000 similar params: per_device_train_batch_size=8,
      # bylo 16 a pod tim 1 gradient_accumulation_steps=2, warmup_steps=300,
      max_steps=3000
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: xbilek25/basic_train_set_en_last3cs_1000
          type: mozilla-foundation/common_voice_11_0
          args: 'config: csen, split: train'
        metrics:
          - name: Wer
            type: wer
            value: 15.800293685756243

basic_train_basic_test 1000 similar params: per_device_train_batch_size=8, # bylo 16 a pod tim 1 gradient_accumulation_steps=2, warmup_steps=300, max_steps=3000

This model is a fine-tuned version of openai/whisper-small on the xbilek25/basic_train_set_en_last3cs_1000 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1368
  • Wer: 15.8003

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • training_steps: 3000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0021 9.01 600 0.1419 16.5590
0.0002 19.0 1200 0.1322 15.3842
0.0001 28.02 1800 0.1351 15.2912
0.0001 38.01 2400 0.1362 15.8639
0.0001 47.02 3000 0.1368 15.8003

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.15.2