xap commited on
Commit
fec1b70
1 Parent(s): 9ae5aba

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1 -1
README.md CHANGED
@@ -40,7 +40,7 @@ model = PeftModel.from_pretrained(
40
  lora_config=lora_config,
41
  )
42
 
43
- inputt = "input in alpaca format"
44
  inputs = tokenizer(inputt,return_tensors="pt")
45
  outputs = model.generate(**inputs, max_new_tokens=5)
46
  print(tokenizer.decode(outputs[0], skip_special_tokens=True))
 
40
  lora_config=lora_config,
41
  )
42
 
43
+ inputt = "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: For the given line of code, both the student and expert have provided the explanation for that line of code. Compute the semantic similarity between the student explanation and the expert explanation for the line of code.. ### Input: for given line of code int[] values = {5, 8, 4, 78, 95, 12, 1, 0, 6, 35, 46};, the expert explanation is We declare an array of values to hold the numbers. and the student explanation is This line creates the integer array with the values. you need this to achieve the goal bc you need an array to look in ### Response: "
44
  inputs = tokenizer(inputt,return_tensors="pt")
45
  outputs = model.generate(**inputs, max_new_tokens=5)
46
  print(tokenizer.decode(outputs[0], skip_special_tokens=True))