|
--- |
|
tags: |
|
- espnet |
|
- audio |
|
- audio-to-audio |
|
language: en |
|
datasets: |
|
- universal_se |
|
license: cc-by-4.0 |
|
--- |
|
|
|
## ESPnet2 ENH model |
|
|
|
### `wyz/vctk_bsrnn_small_causal` |
|
|
|
This model was trained by Emrys365 using universal_se recipe in [espnet](https://github.com/espnet/espnet/). |
|
|
|
### Demo: How to use in ESPnet2 |
|
|
|
Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) |
|
if you haven't done that already. |
|
|
|
```bash |
|
cd espnet |
|
git checkout 443028662106472c60fe8bd892cb277e5b488651 |
|
pip install -e . |
|
cd egs2/universal_se/enh1 |
|
./run.sh --skip_data_prep false --skip_train true --download_model wyz/vctk_bsrnn_small_causal |
|
``` |
|
|
|
|
|
|
|
## ENH config |
|
|
|
<details><summary>expand</summary> |
|
|
|
``` |
|
config: conf/tuning/train_enh_bsrnn_small.yaml |
|
print_config: false |
|
log_level: INFO |
|
dry_run: false |
|
iterator_type: chunk |
|
output_dir: exp_vctk/enh_train_enh_bsrnn_small_raw |
|
ngpu: 1 |
|
seed: 0 |
|
num_workers: 4 |
|
num_att_plot: 3 |
|
dist_backend: nccl |
|
dist_init_method: env:// |
|
dist_world_size: null |
|
dist_rank: null |
|
local_rank: 0 |
|
dist_master_addr: null |
|
dist_master_port: null |
|
dist_launcher: null |
|
multiprocessing_distributed: false |
|
unused_parameters: true |
|
sharded_ddp: false |
|
cudnn_enabled: true |
|
cudnn_benchmark: false |
|
cudnn_deterministic: true |
|
collect_stats: false |
|
write_collected_feats: false |
|
max_epoch: 100 |
|
patience: 30 |
|
val_scheduler_criterion: |
|
- valid |
|
- loss |
|
early_stopping_criterion: |
|
- valid |
|
- loss |
|
- min |
|
best_model_criterion: |
|
- - valid |
|
- loss |
|
- min |
|
keep_nbest_models: 1 |
|
nbest_averaging_interval: 0 |
|
grad_clip: 5.0 |
|
grad_clip_type: 2.0 |
|
grad_noise: false |
|
accum_grad: 1 |
|
no_forward_run: false |
|
resume: true |
|
save_interval: 1000 |
|
train_dtype: float32 |
|
use_amp: false |
|
log_interval: null |
|
use_matplotlib: true |
|
use_tensorboard: true |
|
create_graph_in_tensorboard: false |
|
use_wandb: false |
|
wandb_project: null |
|
wandb_id: null |
|
wandb_entity: null |
|
wandb_name: null |
|
wandb_model_log_interval: -1 |
|
detect_anomaly: false |
|
pretrain_path: null |
|
init_param: [] |
|
ignore_init_mismatch: false |
|
freeze_param: [] |
|
num_iters_per_epoch: 8000 |
|
num_iters_valid: null |
|
batch_size: 4 |
|
valid_batch_size: null |
|
batch_bins: 1000000 |
|
valid_batch_bins: null |
|
train_shape_file: |
|
- exp_vctk/enh_stats_16k/train/speech_mix_shape |
|
- exp_vctk/enh_stats_16k/train/speech_ref1_shape |
|
- exp_vctk/enh_stats_16k/train/dereverb_ref1_shape |
|
valid_shape_file: |
|
- exp_vctk/enh_stats_16k/valid/speech_mix_shape |
|
- exp_vctk/enh_stats_16k/valid/speech_ref1_shape |
|
- exp_vctk/enh_stats_16k/valid/dereverb_ref1_shape |
|
batch_type: folded |
|
valid_batch_type: null |
|
fold_length: |
|
- 80000 |
|
- 80000 |
|
- 80000 |
|
sort_in_batch: descending |
|
sort_batch: descending |
|
multiple_iterator: false |
|
chunk_length: 32000 |
|
chunk_shift_ratio: 0.5 |
|
num_cache_chunks: 1024 |
|
chunk_excluded_key_prefixes: [] |
|
chunk_discard_short_samples: false |
|
train_data_path_and_name_and_type: |
|
- - dump/raw/vctk_noisy_tr_26spk/wav.scp |
|
- speech_mix |
|
- sound |
|
- - dump/raw/vctk_noisy_tr_26spk/spk1.scp |
|
- speech_ref1 |
|
- sound |
|
- - dump/raw/vctk_noisy_tr_26spk/dereverb1.scp |
|
- dereverb_ref1 |
|
- sound |
|
- - dump/raw/vctk_noisy_tr_26spk/utt2category |
|
- category |
|
- text |
|
- - dump/raw/vctk_noisy_tr_26spk/utt2fs |
|
- fs |
|
- text_int |
|
valid_data_path_and_name_and_type: |
|
- - dump/raw/vctk_noisy_cv_2spk/wav.scp |
|
- speech_mix |
|
- sound |
|
- - dump/raw/vctk_noisy_cv_2spk/spk1.scp |
|
- speech_ref1 |
|
- sound |
|
- - dump/raw/vctk_noisy_cv_2spk/dereverb1.scp |
|
- dereverb_ref1 |
|
- sound |
|
- - dump/raw/vctk_noisy_cv_2spk/utt2category |
|
- category |
|
- text |
|
- - dump/raw/vctk_noisy_cv_2spk/utt2fs |
|
- fs |
|
- text_int |
|
allow_variable_data_keys: false |
|
max_cache_size: 0.0 |
|
max_cache_fd: 32 |
|
allow_multi_rates: true |
|
valid_max_cache_size: null |
|
exclude_weight_decay: false |
|
exclude_weight_decay_conf: {} |
|
optim: adam |
|
optim_conf: |
|
lr: 0.001 |
|
eps: 1.0e-08 |
|
weight_decay: 1.0e-05 |
|
scheduler: steplr |
|
scheduler_conf: |
|
step_size: 2 |
|
gamma: 0.99 |
|
init: null |
|
model_conf: |
|
normalize_variance_per_ch: true |
|
categories: |
|
- 1ch_8k |
|
- 1ch_8k_r |
|
- 1ch_16k_r |
|
- 1ch_48k |
|
- 1ch_24k |
|
- 1ch_16k |
|
- 2ch_8k |
|
- 2ch_8k_r |
|
- 2ch_16k |
|
- 2ch_16k_r |
|
- 5ch_8k |
|
- 5ch_16k |
|
- 8ch_8k_r |
|
- 8ch_16k_r |
|
criterions: |
|
- name: mr_l1_tfd |
|
conf: |
|
window_sz: |
|
- 256 |
|
- 512 |
|
- 768 |
|
- 1024 |
|
hop_sz: null |
|
eps: 1.0e-08 |
|
time_domain_weight: 0.5 |
|
normalize_variance: true |
|
wrapper: fixed_order |
|
wrapper_conf: |
|
weight: 1.0 |
|
- name: si_snr |
|
conf: |
|
eps: 1.0e-07 |
|
wrapper: fixed_order |
|
wrapper_conf: |
|
weight: 0.0 |
|
speech_volume_normalize: null |
|
rir_scp: null |
|
rir_apply_prob: 1.0 |
|
noise_scp: null |
|
noise_apply_prob: 1.0 |
|
noise_db_range: '13_15' |
|
short_noise_thres: 0.5 |
|
use_reverberant_ref: false |
|
num_spk: 1 |
|
num_noise_type: 1 |
|
sample_rate: 8000 |
|
force_single_channel: true |
|
channel_reordering: true |
|
categories: |
|
- 1ch_8k |
|
- 1ch_8k_r |
|
- 1ch_16k_r |
|
- 1ch_48k |
|
- 1ch_24k |
|
- 1ch_16k |
|
- 2ch_8k |
|
- 2ch_8k_r |
|
- 2ch_16k |
|
- 2ch_16k_r |
|
- 5ch_8k |
|
- 5ch_16k |
|
- 8ch_8k_r |
|
- 8ch_16k_r |
|
speech_segment: null |
|
avoid_allzero_segment: true |
|
flexible_numspk: false |
|
dynamic_mixing: false |
|
utt2spk: null |
|
dynamic_mixing_gain_db: 0.0 |
|
encoder: stft |
|
encoder_conf: |
|
n_fft: 960 |
|
hop_length: 480 |
|
use_builtin_complex: true |
|
default_fs: 48000 |
|
separator: bsrnn |
|
separator_conf: |
|
num_spk: 1 |
|
num_channels: 64 |
|
num_layers: 6 |
|
target_fs: 48000 |
|
ref_channel: 0 |
|
decoder: stft |
|
decoder_conf: |
|
n_fft: 960 |
|
hop_length: 480 |
|
default_fs: 48000 |
|
mask_module: multi_mask |
|
mask_module_conf: {} |
|
preprocessor: enh |
|
preprocessor_conf: {} |
|
required: |
|
- output_dir |
|
version: '202304' |
|
distributed: false |
|
``` |
|
|
|
</details> |
|
|
|
|
|
|
|
### Citing ESPnet |
|
|
|
```BibTex |
|
@inproceedings{watanabe2018espnet, |
|
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, |
|
title={{ESPnet}: End-to-End Speech Processing Toolkit}, |
|
year={2018}, |
|
booktitle={Proceedings of Interspeech}, |
|
pages={2207--2211}, |
|
doi={10.21437/Interspeech.2018-1456}, |
|
url={http://dx.doi.org/10.21437/Interspeech.2018-1456} |
|
} |
|
|
|
|
|
@inproceedings{ESPnet-SE, |
|
author = {Chenda Li and Jing Shi and Wangyou Zhang and Aswin Shanmugam Subramanian and Xuankai Chang and |
|
Naoyuki Kamo and Moto Hira and Tomoki Hayashi and Christoph B{"{o}}ddeker and Zhuo Chen and Shinji Watanabe}, |
|
title = {ESPnet-SE: End-To-End Speech Enhancement and Separation Toolkit Designed for {ASR} Integration}, |
|
booktitle = {{IEEE} Spoken Language Technology Workshop, {SLT} 2021, Shenzhen, China, January 19-22, 2021}, |
|
pages = {785--792}, |
|
publisher = {{IEEE}}, |
|
year = {2021}, |
|
url = {https://doi.org/10.1109/SLT48900.2021.9383615}, |
|
doi = {10.1109/SLT48900.2021.9383615}, |
|
timestamp = {Mon, 12 Apr 2021 17:08:59 +0200}, |
|
biburl = {https://dblp.org/rec/conf/slt/Li0ZSCKHHBC021.bib}, |
|
bibsource = {dblp computer science bibliography, https://dblp.org} |
|
} |
|
|
|
|
|
``` |
|
|
|
or arXiv: |
|
|
|
```bibtex |
|
@misc{watanabe2018espnet, |
|
title={ESPnet: End-to-End Speech Processing Toolkit}, |
|
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, |
|
year={2018}, |
|
eprint={1804.00015}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|