feat: update pipeline
Browse files- deepfakeconfig.py +6 -3
- deepfakemodel.py +5 -3
- pipeline.py +41 -60
- requirements.txt +1 -3
deepfakeconfig.py
CHANGED
@@ -1,7 +1,10 @@
|
|
1 |
from transformers import PretrainedConfig
|
2 |
-
import torch
|
|
|
|
|
3 |
class DeepFakeConfig(PretrainedConfig):
|
4 |
model_type = "ResNet"
|
5 |
-
|
|
|
6 |
super().__init__(**kwargs)
|
7 |
-
self.DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu'
|
|
|
1 |
from transformers import PretrainedConfig
|
2 |
+
import torch
|
3 |
+
|
4 |
+
|
5 |
class DeepFakeConfig(PretrainedConfig):
|
6 |
model_type = "ResNet"
|
7 |
+
|
8 |
+
def __init__(self, **kwargs):
|
9 |
super().__init__(**kwargs)
|
10 |
+
self.DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu'
|
deepfakemodel.py
CHANGED
@@ -1,9 +1,11 @@
|
|
1 |
-
from
|
2 |
-
from
|
3 |
from .deepfakeconfig import DeepFakeConfig
|
4 |
|
|
|
5 |
class DeepFakeModel(PreTrainedModel):
|
6 |
config_class = DeepFakeConfig
|
|
|
7 |
def __init__(self, config):
|
8 |
super().__init__(config)
|
9 |
self.model = InceptionResnetV1(
|
@@ -15,4 +17,4 @@ class DeepFakeModel(PreTrainedModel):
|
|
15 |
|
16 |
|
17 |
DeepFakeConfig.register_for_auto_class()
|
18 |
-
DeepFakeModel.register_for_auto_class("AutoModelForImageClassification")
|
|
|
1 |
+
from facenet_pytorch import InceptionResnetV1
|
2 |
+
from transformers import PreTrainedModel
|
3 |
from .deepfakeconfig import DeepFakeConfig
|
4 |
|
5 |
+
|
6 |
class DeepFakeModel(PreTrainedModel):
|
7 |
config_class = DeepFakeConfig
|
8 |
+
|
9 |
def __init__(self, config):
|
10 |
super().__init__(config)
|
11 |
self.model = InceptionResnetV1(
|
|
|
17 |
|
18 |
|
19 |
DeepFakeConfig.register_for_auto_class()
|
20 |
+
DeepFakeModel.register_for_auto_class("AutoModelForImageClassification")
|
pipeline.py
CHANGED
@@ -1,72 +1,53 @@
|
|
1 |
-
from transformers.pipelines import PIPELINE_REGISTRY
|
2 |
-
from transformers import Pipeline, AutoModelForImageClassification
|
3 |
import torch
|
|
|
4 |
from PIL import Image
|
5 |
-
import cv2
|
6 |
-
from pytorch_grad_cam import GradCAM
|
7 |
-
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
8 |
-
from pytorch_grad_cam.utils.image import show_cam_on_image
|
9 |
from facenet_pytorch import MTCNN
|
10 |
-
|
|
|
11 |
|
12 |
class DeepFakePipeline(Pipeline):
|
13 |
-
def __init__(self
|
14 |
-
Pipeline.__init__(self
|
|
|
15 |
def _sanitize_parameters(self, **kwargs):
|
16 |
return {}, {}, {}
|
|
|
17 |
def preprocess(self, inputs):
|
18 |
return inputs
|
19 |
-
def _forward(self,input):
|
20 |
-
return input
|
21 |
-
def postprocess(self,confidences,face_with_mask):
|
22 |
-
out = {"confidences":confidences,
|
23 |
-
"face_with_mask": face_with_mask}
|
24 |
-
return out
|
25 |
|
26 |
-
def
|
27 |
-
|
28 |
-
mtcnn = MTCNN(
|
29 |
-
select_largest=False,
|
30 |
-
post_process=False,
|
31 |
-
device=DEVICE)
|
32 |
-
mtcnn.to(DEVICE)
|
33 |
-
model = self.model.model
|
34 |
-
model.to(DEVICE)
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
raise Exception('No face detected')
|
40 |
-
|
41 |
-
face = face.unsqueeze(0) # add the batch dimension
|
42 |
-
face = F.interpolate(face, size=(256, 256), mode='bilinear', align_corners=False)
|
43 |
-
|
44 |
-
# convert the face into a numpy array to be able to plot it
|
45 |
-
prev_face = face.squeeze(0).permute(1, 2, 0).cpu().detach().int().numpy()
|
46 |
-
prev_face = prev_face.astype('uint8')
|
47 |
-
|
48 |
-
face = face.to(DEVICE)
|
49 |
-
face = face.to(torch.float32)
|
50 |
-
face = face / 255.0
|
51 |
-
face_image_to_plot = face.squeeze(0).permute(1, 2, 0).cpu().detach().int().numpy()
|
52 |
-
|
53 |
-
target_layers=[model.block8.branch1[-1]]
|
54 |
-
cam = GradCAM(model=model, target_layers=target_layers)
|
55 |
-
targets = [ClassifierOutputTarget(0)]
|
56 |
-
grayscale_cam = cam(input_tensor=face, targets=targets,eigen_smooth=True)
|
57 |
-
grayscale_cam = grayscale_cam[0, :]
|
58 |
-
visualization = show_cam_on_image(face_image_to_plot, grayscale_cam, use_rgb=True)
|
59 |
-
face_with_mask = cv2.addWeighted(prev_face, 1, visualization, 0.5, 0)
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
from PIL import Image
|
|
|
|
|
|
|
|
|
4 |
from facenet_pytorch import MTCNN
|
5 |
+
from transformers import Pipeline
|
6 |
+
|
7 |
|
8 |
class DeepFakePipeline(Pipeline):
|
9 |
+
def __init__(self, **kwargs):
|
10 |
+
Pipeline.__init__(self, **kwargs)
|
11 |
+
|
12 |
def _sanitize_parameters(self, **kwargs):
|
13 |
return {}, {}, {}
|
14 |
+
|
15 |
def preprocess(self, inputs):
|
16 |
return inputs
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
def _forward(self, input):
|
19 |
+
return input
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
def postprocess(self, confidences):
|
22 |
+
out = {"confidences": confidences}
|
23 |
+
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
def predict(self, input_image: Image.Image):
|
26 |
+
DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu'
|
27 |
+
mtcnn = MTCNN(
|
28 |
+
select_largest=False,
|
29 |
+
post_process=False,
|
30 |
+
device=DEVICE)
|
31 |
+
mtcnn.to(DEVICE)
|
32 |
+
model = self.model.model
|
33 |
+
model.to(DEVICE)
|
34 |
+
|
35 |
+
face = mtcnn(input_image)
|
36 |
+
if face is None:
|
37 |
+
raise Exception('No face detected')
|
38 |
+
|
39 |
+
face = face.unsqueeze(0) # add the batch dimension
|
40 |
+
face = F.interpolate(face, size=(256, 256), mode='bilinear', align_corners=False)
|
41 |
+
face = face.to(DEVICE)
|
42 |
+
face = face.to(torch.float32)
|
43 |
+
face = face / 255.0
|
44 |
+
|
45 |
+
with torch.no_grad():
|
46 |
+
output = torch.sigmoid(model(face).squeeze(0))
|
47 |
+
real_prediction = 1 - output.item()
|
48 |
+
fake_prediction = output.item()
|
49 |
+
confidences = {
|
50 |
+
'real': real_prediction,
|
51 |
+
'fake': fake_prediction
|
52 |
+
}
|
53 |
+
return self.postprocess(confidences)
|
requirements.txt
CHANGED
@@ -1,6 +1,4 @@
|
|
1 |
Pillow
|
2 |
facenet-pytorch==2.5.2
|
3 |
-
torch
|
4 |
-
opencv-python
|
5 |
-
grad-cam
|
6 |
transformers
|
|
|
1 |
Pillow
|
2 |
facenet-pytorch==2.5.2
|
3 |
+
torch
|
|
|
|
|
4 |
transformers
|