|
|
|
|
|
|
|
import torch |
|
|
|
from transformers import LlamaTokenizer, MixtralForCausalLM |
|
import bitsandbytes, flash_attn |
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
self.tokenizer = LlamaTokenizer.from_pretrained(path, trust_remote_code=True) |
|
self.model = MixtralForCausalLM.from_pretrained( |
|
path, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
load_in_8bit=False, |
|
load_in_4bit=True, |
|
use_flash_attention_2=True |
|
) |
|
def __call__(self, data: Any) -> List[List[Dict[str, float]]]: |
|
sys_prompt=data["prompt"] |
|
list=data["inputs"] |
|
prompt=f"<|im_start|>system\n{sys_prompt}.<|im_end|>\n" |
|
for item in list: |
|
if item["role"]=="assistant": |
|
content=item["content"] |
|
prompt+=f"<|im_start|>assistant\n{content}<|im_end|>\n" |
|
else: |
|
content=item["content"] |
|
prompt+=f"<|im_start|>user\n{content}<|im_end|>\n" |
|
prompt+="<|im_start|>assistant\n" |
|
|
|
|
|
|
|
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to("cuda") |
|
generated_ids = self.model.generate(input_ids, max_new_tokens=750, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=self.tokenizer.eos_token_id) |
|
response = self.tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True) |
|
return (f"Response: {response}") |
|
|
|
""" |
|
encodeds = self.tokenizer.encode(prompt, return_tensors="pt") |
|
model_inputs = encodeds.to(device) |
|
self.model.to(device) |
|
generated_ids = self.model.generate(model_inputs, max_new_tokens=1000, do_sample=True) |
|
decoded = self.tokenizer.decode(generated_ids[0]) |
|
return decoded |
|
""" |
|
|
|
|