|
--- |
|
metrics: |
|
- sacrebleu |
|
language: |
|
- en |
|
- th |
|
--- |
|
|
|
# NLLB 600M TH-EN finetuned |
|
This model is finetuned from [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) using SCB-1M and OPUS dataset. |
|
The finetuning script is on [GitHub](https://github.com/wtarit/th-en-machine-translation/tree/main/NLLB). |
|
View full finetuning logs on [wandb](https://wandb.ai/wtarit/NLLB%20TH-EN%20Machine%20Translation/runs/5ma65zoy). |
|
|
|
## Usage |
|
```Python |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline |
|
import torch |
|
|
|
MODEL_NAME = "wtarit/nllb-600M-th-en" |
|
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME) |
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) |
|
device = 0 if torch.cuda.is_available() else "cpu" |
|
|
|
translation_pipeline = pipeline( |
|
"translation", |
|
model=model, |
|
tokenizer=tokenizer, |
|
src_lang="tha_Thai", |
|
tgt_lang="eng_Latn", |
|
max_length=400, |
|
device=device |
|
) |
|
|
|
# Run translation pipeline |
|
result = translation_pipeline("สวัสดี เราคือโมเดลแปลภาษา") |
|
print(result[0]['translation_text']) |
|
``` |
|
|
|
## Score |
|
BLEU Score (Using [sacrebleu](https://huggingface.co/spaces/evaluate-metric/sacrebleu)): 27.37 on IWSLT 2015 |
|
|