|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import numpy as np |
|
from timm.models.layers import to_2tuple |
|
|
|
class PatchEmbed_new(nn.Module): |
|
""" Flexible Image to Patch Embedding |
|
""" |
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, stride=16): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
stride = to_2tuple(stride) |
|
|
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
|
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride) |
|
|
|
def forward(self, x): |
|
x = self.proj(x) |
|
x = x.flatten(2).transpose(1, 2) |
|
return x |
|
|
|
|
|
def get_2d_sincos_pos_embed_flexible(embed_dim, grid_size, cls_token=False): |
|
""" |
|
grid_size: int of the grid height and width |
|
return: |
|
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) |
|
""" |
|
grid_h = np.arange(grid_size[0], dtype=np.float32) |
|
grid_w = np.arange(grid_size[1], dtype=np.float32) |
|
grid = np.meshgrid(grid_w, grid_h) |
|
grid = np.stack(grid, axis=0) |
|
|
|
grid = grid.reshape([2, 1, grid_size[0], grid_size[1]]) |
|
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) |
|
if cls_token: |
|
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0) |
|
return pos_embed |
|
|
|
|
|
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): |
|
assert embed_dim % 2 == 0 |
|
|
|
|
|
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) |
|
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) |
|
|
|
emb = np.concatenate([emb_h, emb_w], axis=1) |
|
return emb |
|
|
|
|
|
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): |
|
""" |
|
embed_dim: output dimension for each position |
|
pos: a list of positions to be encoded: size (M,) |
|
out: (M, D) |
|
""" |
|
assert embed_dim % 2 == 0 |
|
omega = np.arange(embed_dim // 2, dtype=np.float32) |
|
omega /= embed_dim / 2.0 |
|
omega = 1.0 / 10000 ** omega |
|
|
|
pos = pos.reshape(-1) |
|
out = np.einsum("m,d->md", pos, omega) |
|
|
|
emb_sin = np.sin(out) |
|
emb_cos = np.cos(out) |
|
|
|
emb = np.concatenate([emb_sin, emb_cos], axis=1) |
|
return emb |
|
|
|
|
|
class FixedPositionalEncoder(nn.Module): |
|
def __init__(self, pos_embed): |
|
super().__init__() |
|
self.positions = pos_embed |
|
|
|
def forward(self, x, padding_mask): |
|
return self.positions |
|
|
|
|
|
class AltBlock(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
num_heads, |
|
mlp_ratio=4.0, |
|
qkv_bias=False, |
|
qk_scale=None, |
|
drop=0.0, |
|
attn_drop=0.0, |
|
mlp_drop=0.0, |
|
post_mlp_drop=0.0, |
|
drop_path=0.0, |
|
act_layer=nn.GELU, |
|
norm_layer=nn.LayerNorm, |
|
layer_norm_first=True, |
|
ffn_targets=False, |
|
cosine_attention=False, |
|
): |
|
super().__init__() |
|
|
|
self.layer_norm_first = layer_norm_first |
|
self.ffn_targets = ffn_targets |
|
|
|
from timm.models.vision_transformer import DropPath, Mlp |
|
|
|
self.norm1 = norm_layer(dim) |
|
self.attn = AltAttention( |
|
dim, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
attn_drop=attn_drop, |
|
proj_drop=drop, |
|
cosine_attention=cosine_attention, |
|
) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp( |
|
in_features=dim, |
|
hidden_features=mlp_hidden_dim, |
|
act_layer=act_layer, |
|
drop=mlp_drop, |
|
) |
|
self.post_mlp_dropout = nn.Dropout(post_mlp_drop, inplace=False) |
|
|
|
def forward(self, x, padding_mask=None, alibi_bias=None): |
|
if self.layer_norm_first: |
|
x = x + self.drop_path(self.attn(self.norm1(x), padding_mask, alibi_bias)) |
|
r = x = self.mlp(self.norm2(x)) |
|
t = x |
|
x = r + self.drop_path(self.post_mlp_dropout(x)) |
|
if not self.ffn_targets: |
|
t = x |
|
else: |
|
x = x + self.drop_path(self.attn(x, padding_mask, alibi_bias)) |
|
r = x = self.norm1(x) |
|
x = self.mlp(x) |
|
t = x |
|
x = self.norm2(r + self.drop_path(self.post_mlp_dropout(x))) |
|
if not self.ffn_targets: |
|
t = x |
|
|
|
return x, t |
|
|
|
|
|
class AltAttention(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
num_heads=8, |
|
qkv_bias=False, |
|
qk_scale=None, |
|
attn_drop=0.0, |
|
proj_drop=0.0, |
|
cosine_attention=False, |
|
): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = qk_scale or head_dim ** -0.5 |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
self.cosine_attention = cosine_attention |
|
|
|
if cosine_attention: |
|
self.logit_scale = nn.Parameter( |
|
torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True |
|
) |
|
|
|
def forward(self, x, padding_mask=None, alibi_bias=None): |
|
B, N, C = x.shape |
|
qkv = ( |
|
self.qkv(x) |
|
.reshape(B, N, 3, self.num_heads, C // self.num_heads) |
|
.permute(2, 0, 3, 1, 4) |
|
) |
|
q, k, v = ( |
|
qkv[0], |
|
qkv[1], |
|
qkv[2], |
|
) |
|
|
|
dtype = q.dtype |
|
|
|
if self.cosine_attention: |
|
|
|
attn = F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1) |
|
logit_scale = torch.clamp( |
|
self.logit_scale, max=torch.log(torch.tensor(1.0 / 0.01)) |
|
).exp() |
|
attn = attn * logit_scale |
|
else: |
|
q = q * self.scale |
|
attn = q @ k.transpose(-2, -1) |
|
|
|
if alibi_bias is not None: |
|
attn = attn.type_as(alibi_bias) |
|
attn[:, : alibi_bias.size(1)] += alibi_bias |
|
|
|
if padding_mask is not None and padding_mask.any(): |
|
attn = attn.masked_fill( |
|
padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), |
|
float("-inf"), |
|
) |
|
|
|
attn = attn.softmax(dim=-1, dtype=torch.float32).to(dtype=dtype) |
|
attn = self.attn_drop(attn) |
|
x = (attn @ v).transpose(1, 2) |
|
x = x.reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |