willco-afk's picture
Create app.py
f13f7ec verified
import streamlit as st
import tensorflow as tf
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
import numpy as np
from PIL import Image
# Load the pre-trained model
model = load_model('your_trained_model_resnet50.keras')
# Streamlit app title
st.title("Tree Decoration Prediction")
# Upload image for prediction
uploaded_file = st.file_uploader("Choose a tree image", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
# Display uploaded image
img = Image.open(uploaded_file)
st.image(img, caption="Uploaded Image", use_column_width=True)
# Prepare the image for prediction
img = img.resize((224, 224)) # Resizing image for ResNet50 input size
img_array = np.array(img) / 255.0 # Normalize
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
# Predict the class
prediction = model.predict(img_array)
# Show the prediction result
if prediction[0] > 0.5:
st.write("The tree is decorated!")
else:
st.write("The tree is undecorated!")