willco-afk commited on
Commit
f13f7ec
·
verified ·
1 Parent(s): 8c1c33e

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -0
app.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import tensorflow as tf
3
+ from tensorflow.keras.models import load_model
4
+ from tensorflow.keras.preprocessing import image
5
+ import numpy as np
6
+ from PIL import Image
7
+
8
+ # Load the pre-trained model
9
+ model = load_model('your_trained_model_resnet50.keras')
10
+
11
+ # Streamlit app title
12
+ st.title("Tree Decoration Prediction")
13
+
14
+ # Upload image for prediction
15
+ uploaded_file = st.file_uploader("Choose a tree image", type=["jpg", "jpeg", "png"])
16
+
17
+ if uploaded_file is not None:
18
+ # Display uploaded image
19
+ img = Image.open(uploaded_file)
20
+ st.image(img, caption="Uploaded Image", use_column_width=True)
21
+
22
+ # Prepare the image for prediction
23
+ img = img.resize((224, 224)) # Resizing image for ResNet50 input size
24
+ img_array = np.array(img) / 255.0 # Normalize
25
+ img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
26
+
27
+ # Predict the class
28
+ prediction = model.predict(img_array)
29
+
30
+ # Show the prediction result
31
+ if prediction[0] > 0.5:
32
+ st.write("The tree is decorated!")
33
+ else:
34
+ st.write("The tree is undecorated!")