omarkamali commited on
Commit
cc1d0c6
·
verified ·
1 Parent(s): d95a53a

Upload all models and assets for sat (latest)

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +7 -0
  2. README.md +773 -0
  3. models/embeddings/aligned/sat_128d.bin +3 -0
  4. models/embeddings/aligned/sat_128d.meta.json +1 -0
  5. models/embeddings/aligned/sat_128d.projection.npy +3 -0
  6. models/embeddings/aligned/sat_128d_metadata.json +8 -0
  7. models/embeddings/aligned/sat_32d.bin +3 -0
  8. models/embeddings/aligned/sat_32d.meta.json +1 -0
  9. models/embeddings/aligned/sat_32d.projection.npy +3 -0
  10. models/embeddings/aligned/sat_32d_metadata.json +8 -0
  11. models/embeddings/aligned/sat_64d.bin +3 -0
  12. models/embeddings/aligned/sat_64d.meta.json +1 -0
  13. models/embeddings/aligned/sat_64d.projection.npy +3 -0
  14. models/embeddings/aligned/sat_64d_metadata.json +8 -0
  15. models/embeddings/monolingual/sat_128d.bin +3 -0
  16. models/embeddings/monolingual/sat_128d.meta.json +1 -0
  17. models/embeddings/monolingual/sat_128d_metadata.json +16 -0
  18. models/embeddings/monolingual/sat_32d.bin +3 -0
  19. models/embeddings/monolingual/sat_32d.meta.json +1 -0
  20. models/embeddings/monolingual/sat_32d_metadata.json +16 -0
  21. models/embeddings/monolingual/sat_64d.bin +3 -0
  22. models/embeddings/monolingual/sat_64d.meta.json +1 -0
  23. models/embeddings/monolingual/sat_64d_metadata.json +16 -0
  24. models/subword_markov/sat_markov_ctx1_subword.parquet +3 -0
  25. models/subword_markov/sat_markov_ctx1_subword_metadata.json +7 -0
  26. models/subword_markov/sat_markov_ctx2_subword.parquet +3 -0
  27. models/subword_markov/sat_markov_ctx2_subword_metadata.json +7 -0
  28. models/subword_markov/sat_markov_ctx3_subword.parquet +3 -0
  29. models/subword_markov/sat_markov_ctx3_subword_metadata.json +7 -0
  30. models/subword_markov/sat_markov_ctx4_subword.parquet +3 -0
  31. models/subword_markov/sat_markov_ctx4_subword_metadata.json +7 -0
  32. models/subword_ngram/sat_2gram_subword.parquet +3 -0
  33. models/subword_ngram/sat_2gram_subword_metadata.json +7 -0
  34. models/subword_ngram/sat_3gram_subword.parquet +3 -0
  35. models/subword_ngram/sat_3gram_subword_metadata.json +7 -0
  36. models/subword_ngram/sat_4gram_subword.parquet +3 -0
  37. models/subword_ngram/sat_4gram_subword_metadata.json +7 -0
  38. models/subword_ngram/sat_5gram_subword.parquet +3 -0
  39. models/subword_ngram/sat_5gram_subword_metadata.json +7 -0
  40. models/tokenizer/sat_tokenizer_16k.model +3 -0
  41. models/tokenizer/sat_tokenizer_16k.vocab +0 -0
  42. models/tokenizer/sat_tokenizer_32k.model +3 -0
  43. models/tokenizer/sat_tokenizer_32k.vocab +0 -0
  44. models/tokenizer/sat_tokenizer_64k.model +3 -0
  45. models/tokenizer/sat_tokenizer_64k.vocab +0 -0
  46. models/tokenizer/sat_tokenizer_8k.model +3 -0
  47. models/tokenizer/sat_tokenizer_8k.vocab +0 -0
  48. models/vocabulary/sat_vocabulary.parquet +3 -0
  49. models/vocabulary/sat_vocabulary_metadata.json +17 -0
  50. models/word_markov/sat_markov_ctx1_word.parquet +3 -0
.gitattributes CHANGED
@@ -33,3 +33,10 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ visualizations/embedding_similarity.png filter=lfs diff=lfs merge=lfs -text
37
+ visualizations/embedding_tsne_multilingual.png filter=lfs diff=lfs merge=lfs -text
38
+ visualizations/performance_dashboard.png filter=lfs diff=lfs merge=lfs -text
39
+ visualizations/position_encoding_comparison.png filter=lfs diff=lfs merge=lfs -text
40
+ visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
41
+ visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
42
+ visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,773 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: sat
3
+ language_name: Santali
4
+ language_family: austroasiatic_other
5
+ tags:
6
+ - wikilangs
7
+ - nlp
8
+ - tokenizer
9
+ - embeddings
10
+ - n-gram
11
+ - markov
12
+ - wikipedia
13
+ - feature-extraction
14
+ - sentence-similarity
15
+ - tokenization
16
+ - n-grams
17
+ - markov-chain
18
+ - text-mining
19
+ - fasttext
20
+ - babelvec
21
+ - vocabulous
22
+ - vocabulary
23
+ - monolingual
24
+ - family-austroasiatic_other
25
+ license: mit
26
+ library_name: wikilangs
27
+ pipeline_tag: text-generation
28
+ datasets:
29
+ - omarkamali/wikipedia-monthly
30
+ dataset_info:
31
+ name: wikipedia-monthly
32
+ description: Monthly snapshots of Wikipedia articles across 300+ languages
33
+ metrics:
34
+ - name: best_compression_ratio
35
+ type: compression
36
+ value: 4.334
37
+ - name: best_isotropy
38
+ type: isotropy
39
+ value: 0.8573
40
+ - name: vocabulary_size
41
+ type: vocab
42
+ value: 0
43
+ generated: 2026-01-10
44
+ ---
45
+
46
+ # Santali - Wikilangs Models
47
+ ## Comprehensive Research Report & Full Ablation Study
48
+
49
+ This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Santali** Wikipedia data.
50
+ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
51
+
52
+ ## 📋 Repository Contents
53
+
54
+ ### Models & Assets
55
+
56
+ - Tokenizers (8k, 16k, 32k, 64k)
57
+ - N-gram models (2, 3, 4, 5-gram)
58
+ - Markov chains (context of 1, 2, 3, 4 and 5)
59
+ - Subword N-gram and Markov chains
60
+ - Embeddings in various sizes and dimensions (aligned and unaligned)
61
+ - Language Vocabulary
62
+ - Language Statistics
63
+
64
+ ![Performance Dashboard](visualizations/performance_dashboard.png)
65
+
66
+ ### Analysis and Evaluation
67
+
68
+ - [1. Tokenizer Evaluation](#1-tokenizer-evaluation)
69
+ - [2. N-gram Model Evaluation](#2-n-gram-model-evaluation)
70
+ - [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
71
+ - [4. Vocabulary Analysis](#4-vocabulary-analysis)
72
+ - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
73
+ - [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental)
74
+ - [7. Summary & Recommendations](#7-summary--recommendations)
75
+ - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
76
+ - [Visualizations Index](#visualizations-index)
77
+
78
+ ---
79
+ ## 1. Tokenizer Evaluation
80
+
81
+ ![Tokenizer Compression](visualizations/tokenizer_compression.png)
82
+
83
+ ![Tokenizer Fertility](visualizations/tokenizer_fertility.png)
84
+
85
+ ![Tokenizer OOV](visualizations/tokenizer_oov.png)
86
+
87
+ ![Total Tokens](visualizations/tokenizer_total_tokens.png)
88
+
89
+ ### Results
90
+
91
+ | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
92
+ |------------|-------------|---------------|----------|--------------|
93
+ | **8k** | 3.562x | 3.56 | 0.1107% | 614,914 |
94
+ | **16k** | 3.887x | 3.89 | 0.1208% | 563,511 |
95
+ | **32k** | 4.145x | 4.15 | 0.1289% | 528,448 |
96
+ | **64k** | 4.334x 🏆 | 4.34 | 0.1347% | 505,414 |
97
+
98
+ ### Tokenization Examples
99
+
100
+ Below are sample sentences tokenized with each vocabulary size:
101
+
102
+ **Sample 1:** `ᱛᱟᱥᱨᱤᱨ ᱛᱚᱵᱜᱮ ᱫᱚ ᱢᱤᱫᱴᱟᱝ ᱵᱷᱩᱴᱟᱱ ᱨᱤᱱᱤᱡ ᱯᱨᱚᱫᱷᱟᱱ ᱢᱚᱱᱛᱨᱤ ᱛᱟᱦᱮ ᱠᱟᱱᱟ᱾ ᱥᱟᱹᱠᱷᱭᱟᱹᱛ ᱵᱟᱦᱨᱮ ᱡᱚ...`
103
+
104
+ | Vocab | Tokens | Count |
105
+ |-------|--------|-------|
106
+ | 8k | `▁ᱛᱟᱥ ᱨᱤ ᱨ ▁ᱛ ᱚᱵ ᱜᱮ ▁ᱫᱚ ▁ᱢᱤᱫᱴᱟᱝ ▁ᱵᱷᱩᱴᱟᱱ ▁ᱨᱤᱱᱤᱡ ... (+7 more)` | 17 |
107
+ | 16k | `▁ᱛᱟᱥ ᱨᱤ ᱨ ▁ᱛ ᱚᱵ ᱜᱮ ▁ᱫᱚ ▁ᱢᱤᱫᱴᱟᱝ ▁ᱵᱷᱩᱴᱟᱱ ▁ᱨᱤᱱᱤᱡ ... (+7 more)` | 17 |
108
+ | 32k | `▁ᱛᱟᱥ ᱨᱤ ᱨ ▁ᱛᱚᱵ ᱜᱮ ▁ᱫᱚ ▁ᱢᱤᱫᱴᱟᱝ ▁ᱵᱷᱩᱴᱟᱱ ▁ᱨᱤᱱᱤᱡ ▁ᱯᱨᱚᱫᱷᱟᱱ ... (+6 more)` | 16 |
109
+ | 64k | `▁ᱛᱟᱥ ᱨᱤᱨ ▁ᱛᱚᱵ ᱜᱮ ▁ᱫᱚ ▁ᱢᱤᱫᱴᱟᱝ ▁ᱵᱷᱩᱴᱟᱱ ▁ᱨᱤᱱᱤᱡ ▁ᱯᱨᱚᱫᱷᱟᱱ ▁ᱢᱚᱱᱛᱨᱤ ... (+5 more)` | 15 |
110
+
111
+ **Sample 2:** `ᱡᱤᱭᱚᱛᱤ ᱫᱚ ᱢᱤᱫ ᱥᱤᱧᱚᱛᱤᱭᱟᱹ ᱠᱟᱵᱟᱰᱤ ᱠᱷᱮᱞᱚᱸᱱᱰᱤᱭᱟᱹ ᱠᱟᱱᱟᱭ ᱾ ᱩᱱᱤ ᱫᱚ ᱮᱥᱤᱭᱟᱱ ᱜᱮᱢᱥ ᱨᱮ ᱥᱚᱱᱟ ᱢ...`
112
+
113
+ | Vocab | Tokens | Count |
114
+ |-------|--------|-------|
115
+ | 8k | `▁ᱡ ᱤᱭ ᱚᱛᱤ ▁ᱫᱚ ▁ᱢᱤᱫ ▁ᱥᱤᱧᱚᱛᱤᱭᱟᱹ ▁ᱠᱟᱵᱟᱰᱤ ▁ᱠᱷᱮᱞᱚᱸᱱᱰ ᱤᱭᱟᱹ ▁ᱠᱟᱱᱟᱭ ... (+16 more)` | 26 |
116
+ | 16k | `▁ᱡᱤᱭ ᱚᱛᱤ ▁ᱫᱚ ▁ᱢᱤᱫ ▁ᱥᱤᱧᱚᱛᱤᱭᱟᱹ ▁ᱠᱟᱵᱟᱰᱤ ▁ᱠᱷᱮᱞᱚᱸᱱᱰᱤᱭᱟᱹ ▁ᱠᱟᱱᱟᱭ ▁᱾ ▁ᱩᱱᱤ ... (+14 more)` | 24 |
117
+ | 32k | `▁ᱡᱤᱭ ᱚᱛᱤ ▁ᱫᱚ ▁ᱢᱤᱫ ▁ᱥᱤᱧᱚᱛᱤᱭᱟᱹ ▁ᱠᱟᱵᱟᱰᱤ ▁ᱠᱷᱮᱞᱚᱸᱱᱰᱤᱭᱟᱹ ▁ᱠᱟᱱᱟᱭ ▁᱾ ▁ᱩᱱᱤ ... (+14 more)` | 24 |
118
+ | 64k | `▁ᱡᱤᱭ ᱚᱛᱤ ▁ᱫᱚ ▁ᱢᱤᱫ ▁ᱥᱤᱧᱚᱛᱤᱭᱟᱹ ▁ᱠᱟᱵᱟᱰᱤ ▁ᱠᱷᱮᱞᱚᱸᱱᱰᱤᱭᱟᱹ ▁ᱠᱟᱱᱟᱭ ▁᱾ ▁ᱩᱱᱤ ... (+14 more)` | 24 |
119
+
120
+ **Sample 3:** `ᱯᱩᱡᱟ ᱱᱚᱨᱣᱟᱞ (ᱡᱟᱱᱟᱢ ᱑᱕ ᱢᱟᱨᱪ ᱫᱚ ᱢᱤᱫ ᱥᱤᱧᱚᱛᱤᱭᱟᱹ ᱠᱟᱵᱟᱰᱤ ᱠᱷᱮᱞᱚᱸᱰᱤᱭᱟ. ᱠᱟᱱᱟᱭ ᱾ ᱩᱱᱤ ᱫᱚ ᱮᱥ...`
121
+
122
+ | Vocab | Tokens | Count |
123
+ |-------|--------|-------|
124
+ | 8k | `▁ᱯᱩᱡᱟ ▁ᱱᱚᱨ ᱣᱟᱞ ▁( ᱡᱟᱱᱟᱢ ▁᱑᱕ ▁ᱢᱟᱨᱪ ▁ᱫᱚ ▁ᱢᱤᱫ ▁ᱥᱤᱧᱚᱛᱤᱭᱟᱹ ... (+20 more)` | 30 |
125
+ | 16k | `▁ᱯᱩᱡᱟ ▁ᱱᱚᱨ ᱣᱟᱞ ▁( ᱡᱟᱱᱟᱢ ▁᱑᱕ ▁ᱢᱟᱨᱪ ▁ᱫᱚ ▁ᱢᱤᱫ ▁ᱥᱤᱧᱚᱛᱤᱭᱟᱹ ... (+20 more)` | 30 |
126
+ | 32k | `▁ᱯᱩᱡᱟ ▁ᱱᱚᱨᱣᱟᱞ ▁( ᱡᱟᱱᱟᱢ ▁᱑᱕ ▁ᱢᱟᱨᱪ ▁ᱫᱚ ▁ᱢᱤᱫ ▁ᱥᱤᱧᱚᱛᱤᱭᱟᱹ ▁ᱠᱟᱵᱟᱰᱤ ... (+19 more)` | 29 |
127
+ | 64k | `▁ᱯᱩᱡᱟ ▁ᱱᱚᱨᱣᱟᱞ ▁( ᱡᱟᱱᱟᱢ ▁᱑᱕ ▁ᱢᱟᱨᱪ ▁ᱫᱚ ▁ᱢᱤᱫ ▁ᱥᱤᱧᱚᱛᱤᱭᱟᱹ ▁ᱠᱟᱵᱟᱰᱤ ... (+19 more)` | 29 |
128
+
129
+
130
+ ### Key Findings
131
+
132
+ - **Best Compression:** 64k achieves 4.334x compression
133
+ - **Lowest UNK Rate:** 8k with 0.1107% unknown tokens
134
+ - **Trade-off:** Larger vocabularies improve compression but increase model size
135
+ - **Recommendation:** 32k vocabulary provides optimal balance for production use
136
+
137
+ ---
138
+ ## 2. N-gram Model Evaluation
139
+
140
+ ![N-gram Perplexity](visualizations/ngram_perplexity.png)
141
+
142
+ ![N-gram Unique](visualizations/ngram_unique.png)
143
+
144
+ ![N-gram Coverage](visualizations/ngram_coverage.png)
145
+
146
+ ### Results
147
+
148
+ | N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
149
+ |--------|---------|------------|---------|----------------|------------------|-------------------|
150
+ | **2-gram** | Word | 20,084 | 14.29 | 97,087 | 14.0% | 34.6% |
151
+ | **2-gram** | Subword | 373 🏆 | 8.54 | 7,442 | 61.2% | 97.5% |
152
+ | **3-gram** | Word | 54,503 | 15.73 | 165,587 | 7.3% | 21.9% |
153
+ | **3-gram** | Subword | 2,810 | 11.46 | 55,355 | 27.5% | 67.4% |
154
+ | **4-gram** | Word | 106,952 | 16.71 | 264,198 | 4.3% | 16.9% |
155
+ | **4-gram** | Subword | 13,742 | 13.75 | 288,409 | 15.4% | 42.0% |
156
+ | **5-gram** | Word | 75,915 | 16.21 | 180,244 | 5.1% | 19.6% |
157
+ | **5-gram** | Subword | 43,676 | 15.41 | 734,127 | 10.4% | 30.1% |
158
+
159
+ ### Top 5 N-grams by Size
160
+
161
+ **2-grams (Word):**
162
+
163
+ | Rank | N-gram | Count |
164
+ |------|--------|-------|
165
+ | 1 | `ᱩᱱᱤ ᱫᱚ` | 27,097 |
166
+ | 2 | `ᱛᱟᱦᱮᱸ ᱠᱟᱱᱟ` | 24,265 |
167
+ | 3 | `ᱡᱟᱦᱟᱸ ᱫᱚ` | 11,415 |
168
+ | 4 | `ᱨᱮ ᱢᱮᱱᱟᱜᱼᱟ` | 9,610 |
169
+ | 5 | `ᱫᱚ ᱢᱤᱫ` | 8,714 |
170
+
171
+ **3-grams (Word):**
172
+
173
+ | Rank | N-gram | Count |
174
+ |------|--------|-------|
175
+ | 1 | `ᱠᱚ ᱛᱟᱦᱮᱸ ᱠᱟᱱᱟ` | 6,636 |
176
+ | 2 | `ᱥᱟᱶᱛᱟ ᱩᱛᱷᱱᱟᱹᱣ ᱵᱚᱱᱚᱛ` | 5,033 |
177
+ | 3 | `ᱥᱟᱹᱠᱷᱭᱟᱹᱛ ᱵᱟᱦᱨᱮ ᱡᱚᱱᱚᱲ` | 4,990 |
178
+ | 4 | `ᱨᱮ ᱩᱱᱤ ᱫᱚ` | 4,504 |
179
+ | 5 | `ᱨᱮᱱᱟᱜ ᱦᱚᱲ ᱞᱮᱠᱷᱟ` | 3,803 |
180
+
181
+ **4-grams (Word):**
182
+
183
+ | Rank | N-gram | Count |
184
+ |------|--------|-------|
185
+ | 1 | `ᱨᱮᱱᱟᱜ ᱦᱚᱲ ᱞᱮᱠᱷᱟ ᱡᱚᱠᱷᱟ` | 3,279 |
186
+ | 2 | `ᱦᱚᱲ ᱠᱚ ᱛᱟᱦᱮᱸ ᱠᱟᱱᱟ` | 2,960 |
187
+ | 3 | `ᱦᱚᱲ ᱞᱮᱠᱷᱟ ᱡᱚᱠᱷᱟ ᱞᱮᱠᱟᱛᱮ` | 2,711 |
188
+ | 4 | `ᱥᱟᱞ ᱨᱮᱱᱟᱜ ᱦᱚᱲ ᱞᱮᱠᱷᱟ` | 2,039 |
189
+ | 5 | `ᱥᱟᱶᱛᱟ ᱩᱛᱷᱱᱟᱹᱣ ᱵᱚᱱᱚᱛ ᱨᱮ` | 1,482 |
190
+
191
+ **5-grams (Word):**
192
+
193
+ | Rank | N-gram | Count |
194
+ |------|--------|-------|
195
+ | 1 | `ᱨᱮᱱᱟᱜ ᱦᱚᱲ ᱞᱮᱠᱷᱟ ᱡᱚᱠᱷᱟ ᱞᱮᱠᱟᱛᱮ` | 2,560 |
196
+ | 2 | `ᱥᱟᱞ ᱨᱮᱱᱟᱜ ᱦᱚᱲ ᱞᱮᱠᱷᱟ ᱡᱚᱠᱷᱟ` | 2,014 |
197
+ | 3 | `ᱠᱚ ᱛᱟᱦᱮᱸ ᱠᱟᱱᱟ ᱚᱸᱰᱮ ᱠᱷᱚᱱ` | 639 |
198
+ | 4 | `ᱦᱚᱲ ᱠᱚ ᱛᱟᱦᱮᱸ ᱠᱟᱱᱟ ᱚᱸᱰᱮ` | 622 |
199
+ | 5 | `ᱨᱮᱱᱟᱜ ᱥᱟᱞ ᱨᱮᱱᱟᱜ ᱦᱚᱲ ᱞᱮᱠᱷᱟ` | 599 |
200
+
201
+ **2-grams (Subword):**
202
+
203
+ | Rank | N-gram | Count |
204
+ |------|--------|-------|
205
+ | 1 | `ᱟ _` | 532,897 |
206
+ | 2 | `_ ᱠ` | 452,845 |
207
+ | 3 | `_ ᱨ` | 441,511 |
208
+ | 4 | `ᱨ ᱮ` | 427,576 |
209
+ | 5 | `ᱮ _` | 424,447 |
210
+
211
+ **3-grams (Subword):**
212
+
213
+ | Rank | N-gram | Count |
214
+ |------|--------|-------|
215
+ | 1 | `_ ᱨ ᱮ` | 359,020 |
216
+ | 2 | `ᱟ ᱜ _` | 216,961 |
217
+ | 3 | `ᱨ ᱮ _` | 206,913 |
218
+ | 4 | `_ ᱫ ᱚ` | 193,101 |
219
+ | 5 | `ᱫ ᱚ _` | 184,355 |
220
+
221
+ **4-grams (Subword):**
222
+
223
+ | Rank | N-gram | Count |
224
+ |------|--------|-------|
225
+ | 1 | `_ ᱨ ᱮ _` | 183,663 |
226
+ | 2 | `_ ᱫ ᱚ _` | 173,539 |
227
+ | 3 | `ᱮ ᱱ ᱟ ᱜ` | 121,241 |
228
+ | 4 | `ᱟ _ ᱾ _` | 118,531 |
229
+ | 5 | `_ ᱟ ᱨ _` | 109,370 |
230
+
231
+ **5-grams (Subword):**
232
+
233
+ | Rank | N-gram | Count |
234
+ |------|--------|-------|
235
+ | 1 | `ᱮ ᱱ ᱟ ᱜ _` | 88,897 |
236
+ | 2 | `_ ᱠ ᱟ ᱱ ᱟ` | 77,004 |
237
+ | 3 | `ᱨ ᱮ ᱱ ᱟ ᱜ` | 76,395 |
238
+ | 4 | `_ ᱨ ᱮ ᱱ ᱟ` | 76,338 |
239
+ | 5 | `ᱠ ᱟ ᱱ ᱟ _` | 56,559 |
240
+
241
+
242
+ ### Key Findings
243
+
244
+ - **Best Perplexity:** 2-gram (subword) with 373
245
+ - **Entropy Trend:** Decreases with larger n-grams (more predictable)
246
+ - **Coverage:** Top-1000 patterns cover ~30% of corpus
247
+ - **Recommendation:** 4-gram or 5-gram for best predictive performance
248
+
249
+ ---
250
+ ## 3. Markov Chain Evaluation
251
+
252
+ ![Markov Entropy](visualizations/markov_entropy.png)
253
+
254
+ ![Markov Contexts](visualizations/markov_contexts.png)
255
+
256
+ ![Markov Branching](visualizations/markov_branching.png)
257
+
258
+ ### Results
259
+
260
+ | Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
261
+ |---------|---------|-------------|------------|------------------|-----------------|----------------|
262
+ | **1** | Word | 0.7025 | 1.627 | 5.73 | 274,818 | 29.8% |
263
+ | **1** | Subword | 0.8387 | 1.788 | 5.63 | 5,505 | 16.1% |
264
+ | **2** | Word | 0.2957 | 1.228 | 1.89 | 1,572,360 | 70.4% |
265
+ | **2** | Subword | 0.6641 | 1.585 | 4.27 | 30,957 | 33.6% |
266
+ | **3** | Word | 0.1263 | 1.091 | 1.26 | 2,962,389 | 87.4% |
267
+ | **3** | Subword | 0.7552 | 1.688 | 3.97 | 132,005 | 24.5% |
268
+ | **4** | Word | 0.0549 🏆 | 1.039 | 1.09 | 3,737,893 | 94.5% |
269
+ | **4** | Subword | 0.6689 | 1.590 | 2.92 | 523,754 | 33.1% |
270
+
271
+ ### Generated Text Samples (Word-based)
272
+
273
+ Below are text samples generated from each word-based Markov chain model:
274
+
275
+ **Context Size 1:**
276
+
277
+ 1. `ᱨᱮ ᱚᱠᱷᱟ ᱫᱚ ᱯᱚᱱᱚᱛ ᱯᱚᱪᱷᱤᱢ ᱵᱟᱝᱞᱟ ᱨᱮ ᱟᱭᱢᱟ ᱠᱟ ᱥᱱᱤ ᱵᱚᱠᱠᱷᱟᱞᱤ ᱫᱚ ᱥᱮᱨᱢᱟ ᱨᱮᱭᱟᱜ ᱟᱢᱮᱨᱤᱠᱟᱱ ᱮᱠᱥᱯᱨᱮᱥ`
278
+ 2. `ᱫᱚ ᱢᱤᱴᱚᱨ ᱮᱱᱴᱨᱤ ᱞᱮᱠᱟᱛᱮ ᱱᱚᱸᱰᱮ ᱱᱟᱜ ᱥᱟᱥᱚᱱ ᱨᱮᱱᱟᱜ ᱪᱮᱛᱟᱱ ᱨᱮᱠᱚ ᱨᱚᱲᱼᱟ ᱡᱚᱨᱡᱽ ᱢᱟᱭᱨᱤᱱ ᱟᱜ ᱡᱟᱱᱟᱢ ᱞᱮᱱᱟᱭ`
279
+ 3. `ᱟᱨ ᱰᱤᱨᱮᱠᱴᱚᱨ ᱞᱟᱹᱜᱤᱫ ᱛᱮ ᱜᱮᱲᱤᱭᱟᱠᱚᱞᱟ ᱟᱹᱛᱩ ᱠᱟᱱᱟ ᱮᱱᱤᱢᱮᱥᱚᱱ ᱨᱮ ᱛᱮᱭᱟᱨ ᱞᱮᱫᱟ ᱟᱭᱢᱟ ᱫᱤᱱ ᱠᱚ ᱵᱟᱰᱟᱭ ᱛᱟᱦᱮᱸᱫ`
280
+
281
+ **Context Size 2:**
282
+
283
+ 1. `ᱩᱱᱤ ᱫᱚ ᱰᱤᱨᱮᱠᱴᱚᱨ ᱰᱟᱭᱱᱟ ᱞᱳᱨᱮᱱ ᱥᱟᱶ ᱢᱤᱫ ᱥᱟᱹᱜᱟᱹᱭ ᱢᱮᱱᱟᱜ ᱟ ᱫᱚ ᱱᱤᱭᱟᱹ ᱥᱤᱧᱚᱛ ᱨᱮ ᱦᱳᱢᱤᱭᱳᱯᱮᱛᱷᱤ ᱨᱮᱭᱟᱜ ᱮᱛᱦᱚᱵ`
284
+ 2. `ᱛᱟᱦᱮᱸ ᱠᱟᱱᱟ ᱦᱟᱣᱲᱟ ᱱᱤᱭᱩ ᱡᱚᱞᱯᱟᱭᱜᱩᱲᱤ ᱵᱚᱱᱫᱮ ᱵᱷᱟᱨᱚᱛ ᱮᱠᱥᱯᱨᱮᱥ ᱞᱮᱠᱟᱛᱮ ᱪᱟᱞᱟᱣ ᱞᱮᱱᱟ ᱛᱟᱦᱮᱸᱫ ᱥᱟᱹᱠᱷᱭᱟᱹᱛ ᱵᱟᱦᱨᱮ ᱡᱚᱱᱚᱲ...`
285
+ 3. `ᱡᱟᱦᱟᱸ ᱫᱚ ᱡᱮᱜᱮᱫ ᱵᱤᱨᱫᱟᱹᱜᱟᱲ ᱨᱮᱭᱟᱜ ᱯᱷᱮᱠᱟᱞᱴᱤ ᱚᱯᱷ ᱟᱨᱴᱥ ᱮ ᱯᱩᱨᱟᱹᱣ ᱞᱮᱫ ᱛᱟᱦᱮᱸᱫ ᱨᱮ ᱟᱫᱽᱨᱟ ᱵᱷᱮᱫᱩᱣᱟᱥᱳᱞ ᱥᱮᱠᱴᱚᱨ ᱟᱨ`
286
+
287
+ **Context Size 3:**
288
+
289
+ 1. `ᱠᱚ ᱛᱟᱦᱮᱸ ᱠᱟᱱᱟ ᱟᱨ ᱢᱤᱫᱴᱟᱹᱝ ᱥᱮᱠᱮᱱᱰᱟᱨᱤ ᱤᱥᱠᱩᱞ ᱛᱟᱦᱮᱸ ᱠᱟᱱᱟ ᱦᱚᱲᱢᱚ ᱥᱟᱶᱟᱨ ᱵᱟᱱᱫᱳᱣᱟᱱ ᱨᱮ ᱓᱐ ᱜᱚᱴᱟᱝ ᱵᱮᱰ ᱟᱜ ᱵᱮᱞᱠᱩᱨᱤ`
290
+ 2. `ᱥᱟᱶᱛᱟ ᱩᱛᱷᱱᱟᱹᱣ ᱵᱚᱱᱚᱛ ᱨᱤᱱ ᱜᱩᱴ ᱦᱚᱲ ᱮᱞ ᱨᱤᱱ ᱑᱗ ᱐᱔ ᱠᱚ ᱦᱩᱭᱩᱜ ᱠᱟᱱᱟ ᱱᱚᱸᱰᱮ ᱠᱚ ᱛᱟᱦᱮᱸᱱ ᱠᱟᱱ ᱵᱟᱡᱟᱨ`
291
+ 3. `ᱨᱮ ᱩᱱᱤ ᱫᱚ ᱟᱯᱱᱟ ᱥᱟᱯᱱᱟ ᱢᱚᱱᱤ ᱢᱚᱱᱤ ᱯᱷᱤᱞᱢ ᱨᱮ ᱠᱟ ᱠᱚᱱᱱᱚᱰᱟ ᱨᱮ ᱑᱐᱐ ᱜᱚᱴᱟᱝ ᱚᱱᱚᱞ ᱢᱮᱱᱟᱜᱼᱟ ᱱᱟᱜᱟᱢ ᱡᱟᱨᱢᱟᱱ`
292
+
293
+ **Context Size 4:**
294
+
295
+ 1. `ᱨᱮᱱᱟᱜ ᱦᱚᱲ ᱞᱮᱠᱷᱟ ᱡᱚᱠᱷᱟ ᱛᱟᱦᱮᱸ ᱠᱟᱱᱟ ᱱᱚᱣᱟ ᱥᱟᱞ ᱨᱮ ᱵᱟᱲᱦᱟᱣ ᱠᱟᱛᱮ ᱦᱚᱲ ᱠᱚ ᱦᱩᱭ ᱮᱱᱟ ᱟᱨ ᱟᱨ ᱛᱟᱞᱟ ᱨᱮ`
296
+ 2. `ᱦᱚᱲ ᱠᱚ ᱛᱟᱦᱮᱸ ᱠᱟᱱᱟ ᱚᱸᱰᱮ ᱠᱷᱚᱱ ᱒᱙ ᱘᱒᱗ ᱗᱙ ᱔᱖ ᱠᱚᱲᱟ ᱟᱨ ᱑᱘ ᱙᱖᱙ ᱔᱙ ᱓᱒ ᱛᱤᱨᱞᱟᱹ ᱠᱚ ᱛᱟᱦᱮᱸ`
297
+ 3. `ᱦᱚᱲ ᱞᱮᱠᱷᱟ ᱡᱚᱠᱷᱟ ᱞᱮᱠᱟᱛᱮ ᱨᱟᱭᱯᱩᱨ ᱕ ᱔᱗᱐ ᱥᱩᱠᱫᱚᱞ ᱑᱓ ᱐᱙᱓ ᱟᱨ ᱵᱚᱰ ᱵᱚᱰ ᱔ ᱕᱕᱘ ᱜᱚᱞᱥᱤ ᱑ ᱥᱟᱶᱛᱟ ᱩᱛᱷᱱᱟᱹᱣ`
298
+
299
+
300
+ ### Generated Text Samples (Subword-based)
301
+
302
+ Below are text samples generated from each subword-based Markov chain model:
303
+
304
+ **Context Size 1:**
305
+
306
+ 1. `_ᱜ_,_ᱨ_ᱡ_ᱩᱴᱤᱫᱚᱣ_`
307
+ 2. `ᱟᱨᱩᱜ_ᱢ_ᱠᱴᱤᱨᱤᱞ_ᱠᱷ`
308
+ 3. `ᱚᱦᱚ_᱒_ᱢᱤ_ᱠᱷᱟᱨᱮᱸᱠ`
309
+
310
+ **Context Size 2:**
311
+
312
+ 1. `ᱟ_ᱞᱟᱹ_ᱨᱮ_ᱱᱤᱭᱟᱱ_ᱠᱚ`
313
+ 2. `_ᱠᱷᱟᱣ_ᱨᱟᱸᱦᱮ',_ᱵᱟᱡ`
314
+ 3. `_ᱨᱮ_ᱟᱨ_᱖_ᱠᱚ_ᱪᱟᱞ,_`
315
+
316
+ **Context Size 3:**
317
+
318
+ 1. `_ᱨᱮᱱᱟᱜᱼᱟ_bum_ᱵᱤᱥᱟᱱ`
319
+ 2. `ᱟᱜ_ᱯᱟᱹᱨᱤ_ᱢᱟᱞᱟᱜ_ᱢᱟᱨ`
320
+ 3. `ᱨᱮ_᱑᱒0,᱖᱔᱐_ᱟᱜ_ᱠᱟᱱ_`
321
+
322
+ **Context Size 4:**
323
+
324
+ 1. `_ᱨᱮ_ᱯᱷᱮᱰ_ᱠᱚ_ᱚᱲᱟᱜ_ᱨᱚ`
325
+ 2. `_ᱫᱚ_ᱵᱤᱫᱷᱟᱱᱤ_ᱡᱟᱦᱟᱸ_ᱫ`
326
+ 3. `ᱮᱱᱟᱜ_ᱦᱚᱸ_ᱨᱤᱱ_ᱠᱟᱱ_ᱫᱷ`
327
+
328
+
329
+ ### Key Findings
330
+
331
+ - **Best Predictability:** Context-4 (word) with 94.5% predictability
332
+ - **Branching Factor:** Decreases with context size (more deterministic)
333
+ - **Memory Trade-off:** Larger contexts require more storage (523,754 contexts)
334
+ - **Recommendation:** Context-3 or Context-4 for text generation
335
+
336
+ ---
337
+ ## 4. Vocabulary Analysis
338
+
339
+ ![Zipf's Law](visualizations/zipf_law.png)
340
+
341
+ ![Top Words](visualizations/top20_words.png)
342
+
343
+ ![Coverage Curve](visualizations/vocab_coverage.png)
344
+
345
+ ### Statistics
346
+
347
+ | Metric | Value |
348
+ |--------|-------|
349
+ | Vocabulary Size | 104,851 |
350
+ | Total Tokens | 4,586,629 |
351
+ | Mean Frequency | 43.74 |
352
+ | Median Frequency | 3 |
353
+ | Frequency Std Dev | 1084.86 |
354
+
355
+ ### Most Common Words
356
+
357
+ | Rank | Word | Frequency |
358
+ |------|------|-----------|
359
+ | 1 | ᱨᱮ | 194,411 |
360
+ | 2 | ᱫᱚ | 174,300 |
361
+ | 3 | ᱟᱨ | 110,495 |
362
+ | 4 | ᱨᱮᱱᱟᱜ | 75,922 |
363
+ | 5 | ᱠᱚ | 74,024 |
364
+ | 6 | ᱠᱟᱱᱟ | 64,170 |
365
+ | 7 | ᱠᱷᱚᱱ | 46,273 |
366
+ | 8 | ᱩᱱᱤ | 40,257 |
367
+ | 9 | ᱢᱤᱫ | 40,250 |
368
+ | 10 | ᱨᱮᱭᱟᱜ | 38,160 |
369
+
370
+ ### Least Common Words (from vocabulary)
371
+
372
+ | Rank | Word | Frequency |
373
+ |------|------|-----------|
374
+ | 1 | ᱜᱟᱲᱤᱢᱟᱭ | 2 |
375
+ | 2 | ᱜᱨᱟᱱᱰᱤᱝ | 2 |
376
+ | 3 | ᱟᱯᱚᱫᱟ | 2 |
377
+ | 4 | ᱵᱮᱵᱚᱥᱛᱟᱯᱚᱱᱟ | 2 |
378
+ | 5 | ᱢᱩᱦᱟᱹᱱᱟᱹ | 2 |
379
+ | 6 | estuary | 2 |
380
+ | 7 | ᱢᱚᱸᱜᱨᱚᱵᱷ | 2 |
381
+ | 8 | ᱦᱚᱸᱥᱟ | 2 |
382
+ | 9 | ᱞᱮᱛᱤᱯᱩᱨ | 2 |
383
+ | 10 | ᱴᱮᱨᱟᱠᱚᱴᱟ | 2 |
384
+
385
+ ### Zipf's Law Analysis
386
+
387
+ | Metric | Value |
388
+ |--------|-------|
389
+ | Zipf Coefficient | 1.1879 |
390
+ | R² (Goodness of Fit) | 0.996295 |
391
+ | Adherence Quality | **excellent** |
392
+
393
+ ### Coverage Analysis
394
+
395
+ | Top N Words | Coverage |
396
+ |-------------|----------|
397
+ | Top 100 | 42.8% |
398
+ | Top 1,000 | 71.1% |
399
+ | Top 5,000 | 84.6% |
400
+ | Top 10,000 | 89.1% |
401
+
402
+ ### Key Findings
403
+
404
+ - **Zipf Compliance:** R²=0.9963 indicates excellent adherence to Zipf's law
405
+ - **High Frequency Dominance:** Top 100 words cover 42.8% of corpus
406
+ - **Long Tail:** 94,851 words needed for remaining 10.9% coverage
407
+
408
+ ---
409
+ ## 5. Word Embeddings Evaluation
410
+
411
+ ![Embedding Isotropy](visualizations/embedding_isotropy.png)
412
+
413
+ ![Similarity Matrix](visualizations/embedding_similarity.png)
414
+
415
+ ![t-SNE Words](visualizations/tsne_words.png)
416
+
417
+ ![t-SNE Sentences](visualizations/tsne_sentences.png)
418
+
419
+
420
+ ### 5.1 Cross-Lingual Alignment
421
+
422
+ ![Alignment Quality](visualizations/embedding_alignment_quality.png)
423
+
424
+ ![Multilingual t-SNE](visualizations/embedding_tsne_multilingual.png)
425
+
426
+
427
+ ### 5.2 Model Comparison
428
+
429
+ | Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
430
+ |-------|-----------|----------|------------------|---------------|----------------|
431
+ | **mono_32d** | 32 | 0.8573 | 0.3536 | N/A | N/A |
432
+ | **mono_64d** | 64 | 0.8443 | 0.2821 | N/A | N/A |
433
+ | **mono_128d** | 128 | 0.7962 | 0.2213 | N/A | N/A |
434
+ | **aligned_32d** | 32 | 0.8573 🏆 | 0.3640 | 0.0320 | 0.1660 |
435
+ | **aligned_64d** | 64 | 0.8443 | 0.2836 | 0.0440 | 0.2060 |
436
+ | **aligned_128d** | 128 | 0.7962 | 0.2203 | 0.0800 | 0.2960 |
437
+
438
+ ### Key Findings
439
+
440
+ - **Best Isotropy:** aligned_32d with 0.8573 (more uniform distribution)
441
+ - **Semantic Density:** Average pairwise similarity of 0.2875. Lower values indicate better semantic separation.
442
+ - **Alignment Quality:** Aligned models achieve up to 8.0% R@1 in cross-lingual retrieval.
443
+ - **Recommendation:** 128d aligned for best cross-lingual performance
444
+
445
+ ---
446
+ ## 6. Morphological Analysis (Experimental)
447
+
448
+ This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
449
+
450
+ ### 6.1 Productivity & Complexity
451
+
452
+ | Metric | Value | Interpretation | Recommendation |
453
+ |--------|-------|----------------|----------------|
454
+ | Productivity Index | **5.000** | High morphological productivity | Reliable analysis |
455
+ | Idiomaticity Gap | **-0.348** | Low formulaic content | - |
456
+
457
+ ### 6.2 Affix Inventory (Productive Units)
458
+
459
+ These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
460
+
461
+ #### Productive Prefixes
462
+ | Prefix | Examples |
463
+ |--------|----------|
464
+ | `-ᱥ` | ᱥᱵᱫᱚ, ᱥᱨᱚᱵᱷᱟᱱ, ᱥᱤᱧᱟᱛ |
465
+ | `-ᱠ` | ᱠᱷᱮᱢᱟᱨ, ᱠᱳᱲᱚ, ᱠᱟᱞᱮ |
466
+ | `-ᱵ` | ᱵᱤᱨᱫᱟᱹᱜᱟᱲᱤᱭᱩᱱᱤᱵᱷᱟᱨᱥᱤᱴᱮᱴ, ᱵᱷᱳ, ᱵᱟᱫᱽᱞᱟ |
467
+ | `-ᱥᱟ` | ᱥᱟᱠᱩᱱᱛᱚᱞᱟ, ᱥᱟᱭᱟᱱᱟ, ᱥᱟᱵᱽᱢᱟᱨᱥᱟᱞ |
468
+ | `-ᱟ` | ᱟᱣᱚ, ᱟᱵᱽᱫᱩᱞᱟᱦ, ᱟᱭᱹ |
469
+ | `-ᱠᱟ` | ᱠᱟᱞᱮ, ᱠᱟᱨᱟᱭᱠᱟᱞ, ᱠᱟᱨᱠᱟᱛ |
470
+ | `-ᱵᱟ` | ᱵᱟᱫᱽᱞᱟ, ᱵᱟᱯᱞᱟᱱᱤᱡ, ᱵᱟᱴᱚᱢ |
471
+ | `-ᱯ` | ᱯᱟᱱᱛᱷᱟᱠᱚ, ᱯᱷᱤᱠᱟᱨᱰ, ᱯᱷᱟᱭᱡᱟᱵᱟᱫᱽ |
472
+
473
+ #### Productive Suffixes
474
+ | Suffix | Examples |
475
+ |--------|----------|
476
+ | `-ᱟ` | ᱛᱷᱩᱱᱤᱜᱟ, ᱵᱟᱫᱽᱞᱟ, ᱢᱟᱱᱤᱥᱟ |
477
+ | `-ᱤ` | ᱜᱳᱢᱚᱛᱤ, ᱡᱚᱱᱢᱟ���ᱴᱚᱢᱤ, ᱡᱤᱵᱩᱴᱤ |
478
+ | `-ᱨ` | ᱠᱷᱮᱢᱟᱨ, ᱪᱮᱱᱫᱩᱨ, ᱠᱣᱟᱰᱨᱮᱝᱜᱩᱞᱟᱨ |
479
+ | `-ᱱ` | ᱥᱨᱚᱵᱷᱟᱱ, ᱥᱮᱬᱟᱦᱟᱱ, ᱟᱯᱩᱱ |
480
+ | `-ᱚᱱ` | ᱰᱤᱵᱷᱤᱡᱚᱱ, ᱥᱨᱤᱱᱤᱠᱮᱛᱚᱱ, ᱡᱟᱢᱚᱱ |
481
+ | `-ᱟᱨ` | ᱠᱷᱮᱢᱟᱨ, ᱠᱣᱟᱰᱨᱮᱝᱜᱩᱞᱟᱨ, ᱥᱴᱮᱞᱟᱨ |
482
+ | `-ᱟᱱ` | ᱥᱨᱚᱵᱷᱟᱱ, ᱥᱮᱬᱟᱦᱟᱱ, ᱨᱟᱡᱽᱟᱹᱨᱤᱭᱟᱱ |
483
+ | `-ᱞ` | ᱳᱝᱜᱳᱞ, ᱥᱟᱵᱽᱢᱟᱨᱥᱟᱞ, ᱠᱟᱨᱟᱭᱠᱟᱞ |
484
+
485
+ ### 6.3 Bound Stems (Lexical Roots)
486
+
487
+ Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
488
+
489
+ | Stem | Cohesion | Substitutability | Examples |
490
+ |------|----------|------------------|----------|
491
+ | `ᱟᱦᱮᱸ` | 2.13x | 43 contexts | ᱪᱟᱦᱮᱸ, ᱠᱟᱦᱮᱸ, ᱴᱟᱦᱮᱸ |
492
+ | `ᱟᱹᱨᱥ` | 2.33x | 28 contexts | ᱯᱟᱹᱨᱥ, ᱟᱹᱨᱥᱤ, ᱠᱟᱹᱨᱥᱤ |
493
+ | `ᱟᱹᱜᱤ` | 2.06x | 41 contexts | ᱛᱟᱹᱜᱤ, ᱜᱟᱹᱜᱤ, ᱞᱟᱹᱜᱤ |
494
+ | `ᱮᱥᱚᱱ` | 1.90x | 47 contexts | ᱠᱮᱥᱚᱱ, ᱴᱮᱥᱚᱱ, ᱡᱮᱥᱚᱱ |
495
+ | `ᱞᱟᱹᱜ` | 2.30x | 23 contexts | ᱞᱟᱹᱜᱽ, ᱞᱟᱹᱜᱤ, ᱞᱟᱹᱜᱫ |
496
+ | `ᱹᱨᱥᱤ` | 2.40x | 19 contexts | ᱟᱹᱨᱥᱤ, ᱯᱹᱨᱥᱤ, ᱠᱟᱹᱨᱥᱤ |
497
+ | `ᱮᱱᱟᱣ` | 2.03x | 33 contexts | ᱢᱮᱱᱟᱣ, ᱵᱮᱱᱟᱣ, ᱞᱮᱱᱟᱣ |
498
+ | `ᱷᱤᱞᱢ` | 2.47x | 15 contexts | 0ᱷᱤᱞᱢ, ᱳᱷᱤᱞᱢ, ᱯᱷᱤᱞᱢ |
499
+ | `ᱱᱟᱜᱼ` | 2.18x | 20 contexts | ᱟᱱᱟᱜᱼ, ᱮᱱᱟᱜᱼᱟ, ᱟᱱᱟᱜᱼᱟ |
500
+ | `ᱹᱜᱤᱫ` | 2.38x | 15 contexts | ᱟᱹᱜᱤᱫ, ᱞᱟᱹᱜᱤᱫ, ᱯᱟᱹᱜᱤᱫ |
501
+ | `ᱮᱠᱟᱛ` | 2.15x | 20 contexts | ᱞᱮᱠᱟᱛ, ᱪᱮᱠᱟᱛᱮ, ᱞᱮᱠᱟᱛᱮ |
502
+ | `ᱟᱦᱟᱸ` | 1.70x | 45 contexts | ᱦᱟᱦᱟᱸ, ᱛᱟᱦᱟᱸ, ᱨᱟᱦᱟᱸ |
503
+
504
+ ### 6.4 Affix Compatibility (Co-occurrence)
505
+
506
+ This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
507
+
508
+ | Prefix | Suffix | Frequency | Examples |
509
+ |--------|--------|-----------|----------|
510
+ | `-ᱵ` | `-ᱤ` | 74 words | ᱵᱤᱥᱥᱚᱼᱵᱷᱟᱨᱚᱛᱤ, ᱵᱚᱨᱠᱤ |
511
+ | `-ᱵ` | `-ᱟ` | 73 words | ᱵᱷᱟᱫᱩᱨᱟ, ᱵᱤᱛᱟ |
512
+ | `-ᱥ` | `-ᱟ` | 70 words | ᱥᱚᱨᱚᱱᱠᱷᱚᱞᱟ, ᱥᱞᱮᱥᱢᱟ |
513
+ | `-ᱠ` | `-ᱟ` | 66 words | ᱠᱷᱩᱫᱟ, ᱠᱷᱟᱞᱮᱫᱟ |
514
+ | `-ᱥ` | `-ᱤ` | 60 words | ᱥᱳᱱᱤ, ᱥᱤᱝᱡᱤ |
515
+ | `-ᱠ` | `-ᱤ` | 58 words | ᱠᱟᱣᱮᱨᱤ, ᱠᱩᱱᱴᱤ |
516
+ | `-ᱯ` | `-ᱟ` | 57 words | ᱯᱚᱞᱥᱩᱸᱰᱟ, ᱯᱩᱸᱪᱟ |
517
+ | `-ᱵ` | `-ᱨ` | 54 words | ᱵᱷᱚᱣᱟᱱᱤᱯᱩᱨ, ᱵᱷᱤᱴᱤᱨ |
518
+ | `-ᱵ` | `-ᱱ` | 52 words | ᱵᱨᱤᱱᱫᱟᱣᱟᱱ, ᱵᱚᱸᱜᱟᱛᱷᱟᱱ |
519
+ | `-ᱯ` | `-ᱤ` | 50 words | ᱯᱟᱹᱫᱽᱨᱤ, ᱯᱨᱚᱡᱟᱛᱚᱱᱛᱨᱤ |
520
+
521
+ ### 6.5 Recursive Morpheme Segmentation
522
+
523
+ Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`).
524
+
525
+ | Word | Suggested Split | Confidence | Stem |
526
+ |------|-----------------|------------|------|
527
+ | ᱫᱟᱫᱮᱝᱜᱤᱨᱤ | **`ᱫᱟᱫᱮᱝᱜ-ᱤ-ᱨᱤ`** | 7.5 | `ᱤ` |
528
+ | ᱵᱚᱨᱟᱵᱟᱡᱟᱨ | **`ᱵᱚ-ᱨᱟ-ᱵᱟᱡᱟᱨ`** | 7.5 | `ᱵᱟᱡᱟᱨ` |
529
+ | ᱥᱟᱬᱮᱸᱥᱤᱭᱟ | **`ᱥᱟᱬᱮᱸᱥ-ᱤ-ᱭᱟ`** | 7.5 | `ᱤ` |
530
+ | ᱜᱚᱢᱠᱮᱭᱟᱱᱤ | **`ᱜᱚᱢᱠᱮ-ᱭᱟ-ᱱᱤ`** | 6.0 | `ᱜᱚᱢᱠᱮ` |
531
+ | ᱢᱮᱠᱟᱱᱤᱠᱮᱞ | **`ᱢᱮ-ᱠᱟ-ᱱᱤᱠᱮᱞ`** | 6.0 | `ᱱᱤᱠᱮᱞ` |
532
+ | ᱥᱟᱵᱰᱤᱵᱤᱡᱚᱱ | **`ᱥᱟ-ᱵ-ᱰᱤᱵᱤᱡᱚᱱ`** | 6.0 | `ᱰᱤᱵᱤᱡᱚᱱ` |
533
+ | ᱨᱟᱡᱟᱵᱟᱡᱟᱨ | **`ᱨᱟ-ᱡᱟ-ᱵᱟᱡᱟᱨ`** | 6.0 | `ᱵᱟᱡᱟᱨ` |
534
+ | strangers | **`stranger-s`** | 4.5 | `stranger` |
535
+ | proposals | **`proposal-s`** | 4.5 | `proposal` |
536
+ | ᱨᱤᱯᱷᱟᱭᱤᱱᱰ | **`ᱨᱤᱯᱷᱟᱭᱤᱱ-ᱰ`** | 4.5 | `ᱨᱤᱯᱷᱟᱭᱤᱱ` |
537
+ | ᱟᱹᱠᱷᱨᱤᱧᱟᱱ | **`ᱟᱹᱠᱷᱨᱤᱧ-ᱟᱱ`** | 4.5 | `ᱟᱹᱠᱷᱨᱤᱧ` |
538
+ | ᱯᱨᱚᱠᱨᱤᱛᱤᱥ | **`ᱯᱨᱚᱠᱨᱤᱛᱤ-ᱥ`** | 4.5 | `ᱯᱨᱚᱠᱨᱤᱛᱤ` |
539
+ | instituted | **`institute-d`** | 4.5 | `institute` |
540
+ | ᱯᱨᱳᱰᱟᱠᱥᱟᱱᱥ | **`ᱯᱨᱳᱰᱟᱠᱥᱟᱱ-ᱥ`** | 4.5 | `ᱯᱨᱳᱰᱟᱠᱥᱟᱱ` |
541
+ | quarterfinals | **`quarterfinal-s`** | 4.5 | `quarterfinal` |
542
+
543
+ ### 6.6 Linguistic Interpretation
544
+
545
+ > **Automated Insight:**
546
+ The language Santali shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
547
+
548
+ ---
549
+ ## 7. Summary & Recommendations
550
+
551
+ ![Performance Dashboard](visualizations/performance_dashboard.png)
552
+
553
+ ### Production Recommendations
554
+
555
+ | Component | Recommended | Rationale |
556
+ |-----------|-------------|-----------|
557
+ | Tokenizer | **64k BPE** | Best compression (4.33x) |
558
+ | N-gram | **2-gram** | Lowest perplexity (373) |
559
+ | Markov | **Context-4** | Highest predictability (94.5%) |
560
+ | Embeddings | **100d** | Balanced semantic capture and isotropy |
561
+
562
+
563
+ ---
564
+ ## Appendix: Metrics Glossary & Interpretation Guide
565
+
566
+ This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.
567
+
568
+ ### Tokenizer Metrics
569
+
570
+ **Compression Ratio**
571
+ > *Definition:* The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.
572
+ >
573
+ > *Intuition:* Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.
574
+ >
575
+ > *What to seek:* Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.
576
+
577
+ **Average Token Length (Fertility)**
578
+ > *Definition:* Mean number of characters per token produced by the tokenizer.
579
+ >
580
+ > *Intuition:* Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.
581
+ >
582
+ > *What to seek:* Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.
583
+
584
+ **Unknown Token Rate (OOV Rate)**
585
+ > *Definition:* Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.
586
+ >
587
+ > *Intuition:* Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.
588
+ >
589
+ > *What to seek:* Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.
590
+
591
+ ### N-gram Model Metrics
592
+
593
+ **Perplexity**
594
+ > *Definition:* Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.
595
+ >
596
+ > *Intuition:* If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.
597
+ >
598
+ > *What to seek:* Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.
599
+
600
+ **Entropy**
601
+ > *Definition:* Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.
602
+ >
603
+ > *Intuition:* High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.
604
+ >
605
+ > *What to seek:* Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.
606
+
607
+ **Coverage (Top-K)**
608
+ > *Definition:* Percentage of corpus occurrences explained by the top K most frequent n-grams.
609
+ >
610
+ > *Intuition:* High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.
611
+ >
612
+ > *What to seek:* Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.
613
+
614
+ ### Markov Chain Metrics
615
+
616
+ **Average Entropy**
617
+ > *Definition:* Mean entropy across all contexts, measuring average uncertainty in next-word prediction.
618
+ >
619
+ > *Intuition:* Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).
620
+ >
621
+ > *What to seek:* Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.
622
+
623
+ **Branching Factor**
624
+ > *Definition:* Average number of unique next tokens observed for each context.
625
+ >
626
+ > *Intuition:* High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).
627
+ >
628
+ > *What to seek:* Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.
629
+
630
+ **Predictability**
631
+ > *Definition:* Derived metric: (1 - normalized_entropy) × 100%. Indicates how deterministic the model's predictions are.
632
+ >
633
+ > *Intuition:* 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.
634
+ >
635
+ > *What to seek:* Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.
636
+
637
+ ### Vocabulary & Zipf's Law Metrics
638
+
639
+ **Zipf's Coefficient**
640
+ > *Definition:* The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.
641
+ >
642
+ > *Intuition:* A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.
643
+ >
644
+ > *What to seek:* Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.
645
+
646
+ **R² (Coefficient of Determination)**
647
+ > *Definition:* Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.
648
+ >
649
+ > *Intuition:* R² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.
650
+ >
651
+ > *What to seek:* R² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.
652
+
653
+ **Vocabulary Coverage**
654
+ > *Definition:* Cumulative percentage of corpus tokens accounted for by the top N words.
655
+ >
656
+ > *Intuition:* Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.
657
+ >
658
+ > *What to seek:* Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.
659
+
660
+ ### Word Embedding Metrics
661
+
662
+ **Isotropy**
663
+ > *Definition:* Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.
664
+ >
665
+ > *Intuition:* High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.
666
+ >
667
+ > *What to seek:* Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.
668
+
669
+ **Average Norm**
670
+ > *Definition:* Mean magnitude (L2 norm) of word vectors in the embedding space.
671
+ >
672
+ > *Intuition:* Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.
673
+ >
674
+ > *What to seek:* Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).
675
+
676
+ **Cosine Similarity**
677
+ > *Definition:* Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).
678
+ >
679
+ > *Intuition:* Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.
680
+ >
681
+ > *What to seek:* Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.
682
+
683
+ **t-SNE Visualization**
684
+ > *Definition:* t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.
685
+ >
686
+ > *Intuition:* Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.
687
+ >
688
+ > *What to seek:* Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.
689
+
690
+ ### General Interpretation Guidelines
691
+
692
+ 1. **Compare within model families:** Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
693
+ 2. **Consider trade-offs:** Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
694
+ 3. **Context matters:** Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
695
+ 4. **Corpus influence:** All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
696
+ 5. **Language-specific patterns:** Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.
697
+
698
+
699
+ ### Visualizations Index
700
+
701
+ | Visualization | Description |
702
+ |---------------|-------------|
703
+ | Tokenizer Compression | Compression ratios by vocabulary size |
704
+ | Tokenizer Fertility | Average token length by vocabulary |
705
+ | Tokenizer OOV | Unknown token rates |
706
+ | Tokenizer Total Tokens | Total tokens by vocabulary |
707
+ | N-gram Perplexity | Perplexity by n-gram size |
708
+ | N-gram Entropy | Entropy by n-gram size |
709
+ | N-gram Coverage | Top pattern coverage |
710
+ | N-gram Unique | Unique n-gram counts |
711
+ | Markov Entropy | Entropy by context size |
712
+ | Markov Branching | Branching factor by context |
713
+ | Markov Contexts | Unique context counts |
714
+ | Zipf's Law | Frequency-rank distribution with fit |
715
+ | Vocab Frequency | Word frequency distribution |
716
+ | Top 20 Words | Most frequent words |
717
+ | Vocab Coverage | Cumulative coverage curve |
718
+ | Embedding Isotropy | Vector space uniformity |
719
+ | Embedding Norms | Vector magnitude distribution |
720
+ | Embedding Similarity | Word similarity heatmap |
721
+ | Nearest Neighbors | Similar words for key terms |
722
+ | t-SNE Words | 2D word embedding visualization |
723
+ | t-SNE Sentences | 2D sentence embedding visualization |
724
+ | Position Encoding | Encoding method comparison |
725
+ | Model Sizes | Storage requirements |
726
+ | Performance Dashboard | Comprehensive performance overview |
727
+
728
+ ---
729
+ ## About This Project
730
+
731
+ ### Data Source
732
+
733
+ Models trained on [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - a monthly snapshot of Wikipedia articles across 300+ languages.
734
+
735
+ ### Project
736
+
737
+ A project by **[Wikilangs](https://wikilangs.org)** - Open-source NLP models for every Wikipedia language.
738
+
739
+ ### Maintainer
740
+
741
+ [Omar Kamali](https://omarkamali.com) - [Omneity Labs](https://omneitylabs.com)
742
+
743
+ ### Citation
744
+
745
+ If you use these models in your research, please cite:
746
+
747
+ ```bibtex
748
+ @misc{wikilangs2025,
749
+ author = {Kamali, Omar},
750
+ title = {Wikilangs: Open NLP Models for Wikipedia Languages},
751
+ year = {2025},
752
+ doi = {10.5281/zenodo.18073153},
753
+ publisher = {Zenodo},
754
+ url = {https://huggingface.co/wikilangs}
755
+ institution = {Omneity Labs}
756
+ }
757
+ ```
758
+
759
+ ### License
760
+
761
+ MIT License - Free for academic and commercial use.
762
+
763
+ ### Links
764
+
765
+ - 🌐 Website: [wikilangs.org](https://wikilangs.org)
766
+ - 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
767
+ - 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
768
+ - 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
769
+ - 🤝 Sponsor: [Featherless AI](https://featherless.ai)
770
+ ---
771
+ *Generated by Wikilangs Models Pipeline*
772
+
773
+ *Report Date: 2026-01-10 19:38:19*
models/embeddings/aligned/sat_128d.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:174feebfd17e44f3ffd513f2257948fe8856224128ff8c2101ff95a14f63d22b
3
+ size 1071293038
models/embeddings/aligned/sat_128d.meta.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lang": "sat", "dim": 128, "max_seq_len": 512, "is_aligned": true}
models/embeddings/aligned/sat_128d.projection.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6607a7534a29c5307b211eb113e66b583d1103a45089645161dd611973a5bc3
3
+ size 65664
models/embeddings/aligned/sat_128d_metadata.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "language": "sat",
3
+ "dimension": 128,
4
+ "version": "aligned",
5
+ "hub_language": "en",
6
+ "seed_vocab_size": 7511,
7
+ "vocab_size": 45036
8
+ }
models/embeddings/aligned/sat_32d.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:adcb30f884fe24dda6c74d846f355cbb0b1c298e2dd788cecb6e3f309709c5df
3
+ size 268705390
models/embeddings/aligned/sat_32d.meta.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lang": "sat", "dim": 32, "max_seq_len": 512, "is_aligned": true}
models/embeddings/aligned/sat_32d.projection.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba3f13db323698506edc14dbc1073acc83df4ea391c5f5a94eadce271c68e847
3
+ size 4224
models/embeddings/aligned/sat_32d_metadata.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "language": "sat",
3
+ "dimension": 32,
4
+ "version": "aligned",
5
+ "hub_language": "en",
6
+ "seed_vocab_size": 7511,
7
+ "vocab_size": 45036
8
+ }
models/embeddings/aligned/sat_64d.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b848fd6c8cf94f424204fc0289aebd38030af09878252b004c59463510d27cc1
3
+ size 536234606
models/embeddings/aligned/sat_64d.meta.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lang": "sat", "dim": 64, "max_seq_len": 512, "is_aligned": true}
models/embeddings/aligned/sat_64d.projection.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b647305f028e9df01769db8234be44e28678372f05c630fea5abf57d1ef2e026
3
+ size 16512
models/embeddings/aligned/sat_64d_metadata.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "language": "sat",
3
+ "dimension": 64,
4
+ "version": "aligned",
5
+ "hub_language": "en",
6
+ "seed_vocab_size": 7511,
7
+ "vocab_size": 45036
8
+ }
models/embeddings/monolingual/sat_128d.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:174feebfd17e44f3ffd513f2257948fe8856224128ff8c2101ff95a14f63d22b
3
+ size 1071293038
models/embeddings/monolingual/sat_128d.meta.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lang": "sat", "dim": 128, "max_seq_len": 512, "is_aligned": false}
models/embeddings/monolingual/sat_128d_metadata.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "language": "sat",
3
+ "dimension": 128,
4
+ "version": "monolingual",
5
+ "training_params": {
6
+ "algorithm": "skipgram",
7
+ "min_count": 5,
8
+ "window": 5,
9
+ "negative": 5,
10
+ "epochs": 5,
11
+ "encoding_method": "rope",
12
+ "dim": 128,
13
+ "threads": 5
14
+ },
15
+ "vocab_size": 45036
16
+ }
models/embeddings/monolingual/sat_32d.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:adcb30f884fe24dda6c74d846f355cbb0b1c298e2dd788cecb6e3f309709c5df
3
+ size 268705390
models/embeddings/monolingual/sat_32d.meta.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lang": "sat", "dim": 32, "max_seq_len": 512, "is_aligned": false}
models/embeddings/monolingual/sat_32d_metadata.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "language": "sat",
3
+ "dimension": 32,
4
+ "version": "monolingual",
5
+ "training_params": {
6
+ "algorithm": "skipgram",
7
+ "min_count": 5,
8
+ "window": 5,
9
+ "negative": 5,
10
+ "epochs": 5,
11
+ "encoding_method": "rope",
12
+ "dim": 32,
13
+ "threads": 5
14
+ },
15
+ "vocab_size": 45036
16
+ }
models/embeddings/monolingual/sat_64d.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b848fd6c8cf94f424204fc0289aebd38030af09878252b004c59463510d27cc1
3
+ size 536234606
models/embeddings/monolingual/sat_64d.meta.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lang": "sat", "dim": 64, "max_seq_len": 512, "is_aligned": false}
models/embeddings/monolingual/sat_64d_metadata.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "language": "sat",
3
+ "dimension": 64,
4
+ "version": "monolingual",
5
+ "training_params": {
6
+ "algorithm": "skipgram",
7
+ "min_count": 5,
8
+ "window": 5,
9
+ "negative": 5,
10
+ "epochs": 5,
11
+ "encoding_method": "rope",
12
+ "dim": 64,
13
+ "threads": 5
14
+ },
15
+ "vocab_size": 45036
16
+ }
models/subword_markov/sat_markov_ctx1_subword.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57b5d6d0a8aa604bfd78ccc6413df7a15cac0a1625f28983997e869e1a2c232a
3
+ size 252232
models/subword_markov/sat_markov_ctx1_subword_metadata.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "context_size": 1,
3
+ "variant": "subword",
4
+ "language": "sat",
5
+ "unique_contexts": 5505,
6
+ "total_transitions": 27667546
7
+ }
models/subword_markov/sat_markov_ctx2_subword.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d735cb4aff62dfc52d83010998563ccf4c5eeefa40bd8001a836f63f82ad7f03
3
+ size 1166039
models/subword_markov/sat_markov_ctx2_subword_metadata.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "context_size": 2,
3
+ "variant": "subword",
4
+ "language": "sat",
5
+ "unique_contexts": 30957,
6
+ "total_transitions": 27652892
7
+ }
models/subword_markov/sat_markov_ctx3_subword.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0d2813d72ef060518afce7d288ce44086525ab3c60c5228dcd52b350ac6cabe
3
+ size 4237443
models/subword_markov/sat_markov_ctx3_subword_metadata.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "context_size": 3,
3
+ "variant": "subword",
4
+ "language": "sat",
5
+ "unique_contexts": 132005,
6
+ "total_transitions": 27638238
7
+ }
models/subword_markov/sat_markov_ctx4_subword.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4ea96354d10702cda83917512916ed0ba7333ca96dba98f81a3441a4827e34f
3
+ size 13423382
models/subword_markov/sat_markov_ctx4_subword_metadata.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "context_size": 4,
3
+ "variant": "subword",
4
+ "language": "sat",
5
+ "unique_contexts": 523754,
6
+ "total_transitions": 27623584
7
+ }
models/subword_ngram/sat_2gram_subword.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6488b3943f0ee090d632d60ac72247d7f3d6bed67583e04a1558e195fd3a4f0
3
+ size 105451
models/subword_ngram/sat_2gram_subword_metadata.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "n": 2,
3
+ "variant": "subword",
4
+ "language": "sat",
5
+ "unique_ngrams": 7442,
6
+ "total_ngrams": 27667546
7
+ }
models/subword_ngram/sat_3gram_subword.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:343a4c3a69af9a8151b1df2263e335647f72ede49b8c54a35680583930281d69
3
+ size 734455
models/subword_ngram/sat_3gram_subword_metadata.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "n": 3,
3
+ "variant": "subword",
4
+ "language": "sat",
5
+ "unique_ngrams": 55355,
6
+ "total_ngrams": 27652892
7
+ }
models/subword_ngram/sat_4gram_subword.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72565d665073aa0d9be61c1295c7f94c8010bc7c47f32d114c7091494f5384a3
3
+ size 3623923
models/subword_ngram/sat_4gram_subword_metadata.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "n": 4,
3
+ "variant": "subword",
4
+ "language": "sat",
5
+ "unique_ngrams": 288409,
6
+ "total_ngrams": 27638238
7
+ }
models/subword_ngram/sat_5gram_subword.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2a975608f800b7192d045b46e7104bc84e46191031b1c0870611015d55f0f07
3
+ size 9914156
models/subword_ngram/sat_5gram_subword_metadata.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "n": 5,
3
+ "variant": "subword",
4
+ "language": "sat",
5
+ "unique_ngrams": 734127,
6
+ "total_ngrams": 27623584
7
+ }
models/tokenizer/sat_tokenizer_16k.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9294b57f4851595afcd78a86b3c3b8cd97c195c78a5d9f63bfcc7bd9ee3ed1e7
3
+ size 606785
models/tokenizer/sat_tokenizer_16k.vocab ADDED
The diff for this file is too large to render. See raw diff
 
models/tokenizer/sat_tokenizer_32k.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3bec3bbac6b3192e128bbb189f88165316d7ebc3edbfa6154c455a7ad906b108
3
+ size 991401
models/tokenizer/sat_tokenizer_32k.vocab ADDED
The diff for this file is too large to render. See raw diff
 
models/tokenizer/sat_tokenizer_64k.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ab238d1f78b219c53ab1bbce97686af37009546b521e97abde148d74fa67e15
3
+ size 1829909
models/tokenizer/sat_tokenizer_64k.vocab ADDED
The diff for this file is too large to render. See raw diff
 
models/tokenizer/sat_tokenizer_8k.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f1c856e0d0d1e318a99389ece7b6fdebfb5e46b8d5208c00e2a681752e62072
3
+ size 417795
models/tokenizer/sat_tokenizer_8k.vocab ADDED
The diff for this file is too large to render. See raw diff
 
models/vocabulary/sat_vocabulary.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9c61c65dc77ea338cd4aec048457de6fab3900436a1ad18ef3307f6e076cb82
3
+ size 1883210
models/vocabulary/sat_vocabulary_metadata.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "language": "sat",
3
+ "vocabulary_size": 104851,
4
+ "variant": "full",
5
+ "statistics": {
6
+ "type_token_ratio": 0.057803130384474044,
7
+ "coverage": {
8
+ "top_100": 0.41236231093111825,
9
+ "top_1000": 0.6859438370713339,
10
+ "top_5000": 0.8158233425805784,
11
+ "top_10000": 0.8587137135327363
12
+ },
13
+ "hapax_count": 170103,
14
+ "hapax_ratio": 0.6186598485564858,
15
+ "total_documents": 14654
16
+ }
17
+ }
models/word_markov/sat_markov_ctx1_word.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:270b607222d5d62ff400704e633b1f8947b30ede33970fc17452eed0535f7ac8
3
+ size 18766347