Upload all models and assets for sat (latest)
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +7 -0
- README.md +773 -0
- models/embeddings/aligned/sat_128d.bin +3 -0
- models/embeddings/aligned/sat_128d.meta.json +1 -0
- models/embeddings/aligned/sat_128d.projection.npy +3 -0
- models/embeddings/aligned/sat_128d_metadata.json +8 -0
- models/embeddings/aligned/sat_32d.bin +3 -0
- models/embeddings/aligned/sat_32d.meta.json +1 -0
- models/embeddings/aligned/sat_32d.projection.npy +3 -0
- models/embeddings/aligned/sat_32d_metadata.json +8 -0
- models/embeddings/aligned/sat_64d.bin +3 -0
- models/embeddings/aligned/sat_64d.meta.json +1 -0
- models/embeddings/aligned/sat_64d.projection.npy +3 -0
- models/embeddings/aligned/sat_64d_metadata.json +8 -0
- models/embeddings/monolingual/sat_128d.bin +3 -0
- models/embeddings/monolingual/sat_128d.meta.json +1 -0
- models/embeddings/monolingual/sat_128d_metadata.json +16 -0
- models/embeddings/monolingual/sat_32d.bin +3 -0
- models/embeddings/monolingual/sat_32d.meta.json +1 -0
- models/embeddings/monolingual/sat_32d_metadata.json +16 -0
- models/embeddings/monolingual/sat_64d.bin +3 -0
- models/embeddings/monolingual/sat_64d.meta.json +1 -0
- models/embeddings/monolingual/sat_64d_metadata.json +16 -0
- models/subword_markov/sat_markov_ctx1_subword.parquet +3 -0
- models/subword_markov/sat_markov_ctx1_subword_metadata.json +7 -0
- models/subword_markov/sat_markov_ctx2_subword.parquet +3 -0
- models/subword_markov/sat_markov_ctx2_subword_metadata.json +7 -0
- models/subword_markov/sat_markov_ctx3_subword.parquet +3 -0
- models/subword_markov/sat_markov_ctx3_subword_metadata.json +7 -0
- models/subword_markov/sat_markov_ctx4_subword.parquet +3 -0
- models/subword_markov/sat_markov_ctx4_subword_metadata.json +7 -0
- models/subword_ngram/sat_2gram_subword.parquet +3 -0
- models/subword_ngram/sat_2gram_subword_metadata.json +7 -0
- models/subword_ngram/sat_3gram_subword.parquet +3 -0
- models/subword_ngram/sat_3gram_subword_metadata.json +7 -0
- models/subword_ngram/sat_4gram_subword.parquet +3 -0
- models/subword_ngram/sat_4gram_subword_metadata.json +7 -0
- models/subword_ngram/sat_5gram_subword.parquet +3 -0
- models/subword_ngram/sat_5gram_subword_metadata.json +7 -0
- models/tokenizer/sat_tokenizer_16k.model +3 -0
- models/tokenizer/sat_tokenizer_16k.vocab +0 -0
- models/tokenizer/sat_tokenizer_32k.model +3 -0
- models/tokenizer/sat_tokenizer_32k.vocab +0 -0
- models/tokenizer/sat_tokenizer_64k.model +3 -0
- models/tokenizer/sat_tokenizer_64k.vocab +0 -0
- models/tokenizer/sat_tokenizer_8k.model +3 -0
- models/tokenizer/sat_tokenizer_8k.vocab +0 -0
- models/vocabulary/sat_vocabulary.parquet +3 -0
- models/vocabulary/sat_vocabulary_metadata.json +17 -0
- models/word_markov/sat_markov_ctx1_word.parquet +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,10 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
visualizations/embedding_similarity.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
visualizations/embedding_tsne_multilingual.png filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
visualizations/performance_dashboard.png filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
visualizations/position_encoding_comparison.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
+
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,773 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: sat
|
| 3 |
+
language_name: Santali
|
| 4 |
+
language_family: austroasiatic_other
|
| 5 |
+
tags:
|
| 6 |
+
- wikilangs
|
| 7 |
+
- nlp
|
| 8 |
+
- tokenizer
|
| 9 |
+
- embeddings
|
| 10 |
+
- n-gram
|
| 11 |
+
- markov
|
| 12 |
+
- wikipedia
|
| 13 |
+
- feature-extraction
|
| 14 |
+
- sentence-similarity
|
| 15 |
+
- tokenization
|
| 16 |
+
- n-grams
|
| 17 |
+
- markov-chain
|
| 18 |
+
- text-mining
|
| 19 |
+
- fasttext
|
| 20 |
+
- babelvec
|
| 21 |
+
- vocabulous
|
| 22 |
+
- vocabulary
|
| 23 |
+
- monolingual
|
| 24 |
+
- family-austroasiatic_other
|
| 25 |
+
license: mit
|
| 26 |
+
library_name: wikilangs
|
| 27 |
+
pipeline_tag: text-generation
|
| 28 |
+
datasets:
|
| 29 |
+
- omarkamali/wikipedia-monthly
|
| 30 |
+
dataset_info:
|
| 31 |
+
name: wikipedia-monthly
|
| 32 |
+
description: Monthly snapshots of Wikipedia articles across 300+ languages
|
| 33 |
+
metrics:
|
| 34 |
+
- name: best_compression_ratio
|
| 35 |
+
type: compression
|
| 36 |
+
value: 4.334
|
| 37 |
+
- name: best_isotropy
|
| 38 |
+
type: isotropy
|
| 39 |
+
value: 0.8573
|
| 40 |
+
- name: vocabulary_size
|
| 41 |
+
type: vocab
|
| 42 |
+
value: 0
|
| 43 |
+
generated: 2026-01-10
|
| 44 |
+
---
|
| 45 |
+
|
| 46 |
+
# Santali - Wikilangs Models
|
| 47 |
+
## Comprehensive Research Report & Full Ablation Study
|
| 48 |
+
|
| 49 |
+
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Santali** Wikipedia data.
|
| 50 |
+
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
|
| 51 |
+
|
| 52 |
+
## 📋 Repository Contents
|
| 53 |
+
|
| 54 |
+
### Models & Assets
|
| 55 |
+
|
| 56 |
+
- Tokenizers (8k, 16k, 32k, 64k)
|
| 57 |
+
- N-gram models (2, 3, 4, 5-gram)
|
| 58 |
+
- Markov chains (context of 1, 2, 3, 4 and 5)
|
| 59 |
+
- Subword N-gram and Markov chains
|
| 60 |
+
- Embeddings in various sizes and dimensions (aligned and unaligned)
|
| 61 |
+
- Language Vocabulary
|
| 62 |
+
- Language Statistics
|
| 63 |
+
|
| 64 |
+

|
| 65 |
+
|
| 66 |
+
### Analysis and Evaluation
|
| 67 |
+
|
| 68 |
+
- [1. Tokenizer Evaluation](#1-tokenizer-evaluation)
|
| 69 |
+
- [2. N-gram Model Evaluation](#2-n-gram-model-evaluation)
|
| 70 |
+
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 71 |
+
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 72 |
+
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 73 |
+
- [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental)
|
| 74 |
+
- [7. Summary & Recommendations](#7-summary--recommendations)
|
| 75 |
+
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 76 |
+
- [Visualizations Index](#visualizations-index)
|
| 77 |
+
|
| 78 |
+
---
|
| 79 |
+
## 1. Tokenizer Evaluation
|
| 80 |
+
|
| 81 |
+

|
| 82 |
+
|
| 83 |
+

|
| 84 |
+
|
| 85 |
+

|
| 86 |
+
|
| 87 |
+

|
| 88 |
+
|
| 89 |
+
### Results
|
| 90 |
+
|
| 91 |
+
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 92 |
+
|------------|-------------|---------------|----------|--------------|
|
| 93 |
+
| **8k** | 3.562x | 3.56 | 0.1107% | 614,914 |
|
| 94 |
+
| **16k** | 3.887x | 3.89 | 0.1208% | 563,511 |
|
| 95 |
+
| **32k** | 4.145x | 4.15 | 0.1289% | 528,448 |
|
| 96 |
+
| **64k** | 4.334x 🏆 | 4.34 | 0.1347% | 505,414 |
|
| 97 |
+
|
| 98 |
+
### Tokenization Examples
|
| 99 |
+
|
| 100 |
+
Below are sample sentences tokenized with each vocabulary size:
|
| 101 |
+
|
| 102 |
+
**Sample 1:** `ᱛᱟᱥᱨᱤᱨ ᱛᱚᱵᱜᱮ ᱫᱚ ᱢᱤᱫᱴᱟᱝ ᱵᱷᱩᱴᱟᱱ ᱨᱤᱱᱤᱡ ᱯᱨᱚᱫᱷᱟᱱ ᱢᱚᱱᱛᱨᱤ ᱛᱟᱦᱮ ᱠᱟᱱᱟ᱾ ᱥᱟᱹᱠᱷᱭᱟᱹᱛ ᱵᱟᱦᱨᱮ ᱡᱚ...`
|
| 103 |
+
|
| 104 |
+
| Vocab | Tokens | Count |
|
| 105 |
+
|-------|--------|-------|
|
| 106 |
+
| 8k | `▁ᱛᱟᱥ ᱨᱤ ᱨ ▁ᱛ ᱚᱵ ᱜᱮ ▁ᱫᱚ ▁ᱢᱤᱫᱴᱟᱝ ▁ᱵᱷᱩᱴᱟᱱ ▁ᱨᱤᱱᱤᱡ ... (+7 more)` | 17 |
|
| 107 |
+
| 16k | `▁ᱛᱟᱥ ᱨᱤ ᱨ ▁ᱛ ᱚᱵ ᱜᱮ ▁ᱫᱚ ▁ᱢᱤᱫᱴᱟᱝ ▁ᱵᱷᱩᱴᱟᱱ ▁ᱨᱤᱱᱤᱡ ... (+7 more)` | 17 |
|
| 108 |
+
| 32k | `▁ᱛᱟᱥ ᱨᱤ ᱨ ▁ᱛᱚᱵ ᱜᱮ ▁ᱫᱚ ▁ᱢᱤᱫᱴᱟᱝ ▁ᱵᱷᱩᱴᱟᱱ ▁ᱨᱤᱱᱤᱡ ▁ᱯᱨᱚᱫᱷᱟᱱ ... (+6 more)` | 16 |
|
| 109 |
+
| 64k | `▁ᱛᱟᱥ ᱨᱤᱨ ▁ᱛᱚᱵ ᱜᱮ ▁ᱫᱚ ▁ᱢᱤᱫᱴᱟᱝ ▁ᱵᱷᱩᱴᱟᱱ ▁ᱨᱤᱱᱤᱡ ▁ᱯᱨᱚᱫᱷᱟᱱ ▁ᱢᱚᱱᱛᱨᱤ ... (+5 more)` | 15 |
|
| 110 |
+
|
| 111 |
+
**Sample 2:** `ᱡᱤᱭᱚᱛᱤ ᱫᱚ ᱢᱤᱫ ᱥᱤᱧᱚᱛᱤᱭᱟᱹ ᱠᱟᱵᱟᱰᱤ ᱠᱷᱮᱞᱚᱸᱱᱰᱤᱭᱟᱹ ᱠᱟᱱᱟᱭ ᱾ ᱩᱱᱤ ᱫᱚ ᱮᱥᱤᱭᱟᱱ ᱜᱮᱢᱥ ᱨᱮ ᱥᱚᱱᱟ ᱢ...`
|
| 112 |
+
|
| 113 |
+
| Vocab | Tokens | Count |
|
| 114 |
+
|-------|--------|-------|
|
| 115 |
+
| 8k | `▁ᱡ ᱤᱭ ᱚᱛᱤ ▁ᱫᱚ ▁ᱢᱤᱫ ▁ᱥᱤᱧᱚᱛᱤᱭᱟᱹ ▁ᱠᱟᱵᱟᱰᱤ ▁ᱠᱷᱮᱞᱚᱸᱱᱰ ᱤᱭᱟᱹ ▁ᱠᱟᱱᱟᱭ ... (+16 more)` | 26 |
|
| 116 |
+
| 16k | `▁ᱡᱤᱭ ᱚᱛᱤ ▁ᱫᱚ ▁ᱢᱤᱫ ▁ᱥᱤᱧᱚᱛᱤᱭᱟᱹ ▁ᱠᱟᱵᱟᱰᱤ ▁ᱠᱷᱮᱞᱚᱸᱱᱰᱤᱭᱟᱹ ▁ᱠᱟᱱᱟᱭ ▁᱾ ▁ᱩᱱᱤ ... (+14 more)` | 24 |
|
| 117 |
+
| 32k | `▁ᱡᱤᱭ ᱚᱛᱤ ▁ᱫᱚ ▁ᱢᱤᱫ ▁ᱥᱤᱧᱚᱛᱤᱭᱟᱹ ▁ᱠᱟᱵᱟᱰᱤ ▁ᱠᱷᱮᱞᱚᱸᱱᱰᱤᱭᱟᱹ ▁ᱠᱟᱱᱟᱭ ▁᱾ ▁ᱩᱱᱤ ... (+14 more)` | 24 |
|
| 118 |
+
| 64k | `▁ᱡᱤᱭ ᱚᱛᱤ ▁ᱫᱚ ▁ᱢᱤᱫ ▁ᱥᱤᱧᱚᱛᱤᱭᱟᱹ ▁ᱠᱟᱵᱟᱰᱤ ▁ᱠᱷᱮᱞᱚᱸᱱᱰᱤᱭᱟᱹ ▁ᱠᱟᱱᱟᱭ ▁᱾ ▁ᱩᱱᱤ ... (+14 more)` | 24 |
|
| 119 |
+
|
| 120 |
+
**Sample 3:** `ᱯᱩᱡᱟ ᱱᱚᱨᱣᱟᱞ (ᱡᱟᱱᱟᱢ ᱑᱕ ᱢᱟᱨᱪ ᱫᱚ ᱢᱤᱫ ᱥᱤᱧᱚᱛᱤᱭᱟᱹ ᱠᱟᱵᱟᱰᱤ ᱠᱷᱮᱞᱚᱸᱰᱤᱭᱟ. ᱠᱟᱱᱟᱭ ᱾ ᱩᱱᱤ ᱫᱚ ᱮᱥ...`
|
| 121 |
+
|
| 122 |
+
| Vocab | Tokens | Count |
|
| 123 |
+
|-------|--------|-------|
|
| 124 |
+
| 8k | `▁ᱯᱩᱡᱟ ▁ᱱᱚᱨ ᱣᱟᱞ ▁( ᱡᱟᱱᱟᱢ ▁᱑᱕ ▁ᱢᱟᱨᱪ ▁ᱫᱚ ▁ᱢᱤᱫ ▁ᱥᱤᱧᱚᱛᱤᱭᱟᱹ ... (+20 more)` | 30 |
|
| 125 |
+
| 16k | `▁ᱯᱩᱡᱟ ▁ᱱᱚᱨ ᱣᱟᱞ ▁( ᱡᱟᱱᱟᱢ ▁᱑᱕ ▁ᱢᱟᱨᱪ ▁ᱫᱚ ▁ᱢᱤᱫ ▁ᱥᱤᱧᱚᱛᱤᱭᱟᱹ ... (+20 more)` | 30 |
|
| 126 |
+
| 32k | `▁ᱯᱩᱡᱟ ▁ᱱᱚᱨᱣᱟᱞ ▁( ᱡᱟᱱᱟᱢ ▁᱑᱕ ▁ᱢᱟᱨᱪ ▁ᱫᱚ ▁ᱢᱤᱫ ▁ᱥᱤᱧᱚᱛᱤᱭᱟᱹ ▁ᱠᱟᱵᱟᱰᱤ ... (+19 more)` | 29 |
|
| 127 |
+
| 64k | `▁ᱯᱩᱡᱟ ▁ᱱᱚᱨᱣᱟᱞ ▁( ᱡᱟᱱᱟᱢ ▁᱑᱕ ▁ᱢᱟᱨᱪ ▁ᱫᱚ ▁ᱢᱤᱫ ▁ᱥᱤᱧᱚᱛᱤᱭᱟᱹ ▁ᱠᱟᱵᱟᱰᱤ ... (+19 more)` | 29 |
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
### Key Findings
|
| 131 |
+
|
| 132 |
+
- **Best Compression:** 64k achieves 4.334x compression
|
| 133 |
+
- **Lowest UNK Rate:** 8k with 0.1107% unknown tokens
|
| 134 |
+
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 135 |
+
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 136 |
+
|
| 137 |
+
---
|
| 138 |
+
## 2. N-gram Model Evaluation
|
| 139 |
+
|
| 140 |
+

|
| 141 |
+
|
| 142 |
+

|
| 143 |
+
|
| 144 |
+

|
| 145 |
+
|
| 146 |
+
### Results
|
| 147 |
+
|
| 148 |
+
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 149 |
+
|--------|---------|------------|---------|----------------|------------------|-------------------|
|
| 150 |
+
| **2-gram** | Word | 20,084 | 14.29 | 97,087 | 14.0% | 34.6% |
|
| 151 |
+
| **2-gram** | Subword | 373 🏆 | 8.54 | 7,442 | 61.2% | 97.5% |
|
| 152 |
+
| **3-gram** | Word | 54,503 | 15.73 | 165,587 | 7.3% | 21.9% |
|
| 153 |
+
| **3-gram** | Subword | 2,810 | 11.46 | 55,355 | 27.5% | 67.4% |
|
| 154 |
+
| **4-gram** | Word | 106,952 | 16.71 | 264,198 | 4.3% | 16.9% |
|
| 155 |
+
| **4-gram** | Subword | 13,742 | 13.75 | 288,409 | 15.4% | 42.0% |
|
| 156 |
+
| **5-gram** | Word | 75,915 | 16.21 | 180,244 | 5.1% | 19.6% |
|
| 157 |
+
| **5-gram** | Subword | 43,676 | 15.41 | 734,127 | 10.4% | 30.1% |
|
| 158 |
+
|
| 159 |
+
### Top 5 N-grams by Size
|
| 160 |
+
|
| 161 |
+
**2-grams (Word):**
|
| 162 |
+
|
| 163 |
+
| Rank | N-gram | Count |
|
| 164 |
+
|------|--------|-------|
|
| 165 |
+
| 1 | `ᱩᱱᱤ ᱫᱚ` | 27,097 |
|
| 166 |
+
| 2 | `ᱛᱟᱦᱮᱸ ᱠᱟᱱᱟ` | 24,265 |
|
| 167 |
+
| 3 | `ᱡᱟᱦᱟᱸ ᱫᱚ` | 11,415 |
|
| 168 |
+
| 4 | `ᱨᱮ ᱢᱮᱱᱟᱜᱼᱟ` | 9,610 |
|
| 169 |
+
| 5 | `ᱫᱚ ᱢᱤᱫ` | 8,714 |
|
| 170 |
+
|
| 171 |
+
**3-grams (Word):**
|
| 172 |
+
|
| 173 |
+
| Rank | N-gram | Count |
|
| 174 |
+
|------|--------|-------|
|
| 175 |
+
| 1 | `ᱠᱚ ᱛᱟᱦᱮᱸ ᱠᱟᱱᱟ` | 6,636 |
|
| 176 |
+
| 2 | `ᱥᱟᱶᱛᱟ ᱩᱛᱷᱱᱟᱹᱣ ᱵᱚᱱᱚᱛ` | 5,033 |
|
| 177 |
+
| 3 | `ᱥᱟᱹᱠᱷᱭᱟᱹᱛ ᱵᱟᱦᱨᱮ ᱡᱚᱱᱚᱲ` | 4,990 |
|
| 178 |
+
| 4 | `ᱨᱮ ᱩᱱᱤ ᱫᱚ` | 4,504 |
|
| 179 |
+
| 5 | `ᱨᱮᱱᱟᱜ ᱦᱚᱲ ᱞᱮᱠᱷᱟ` | 3,803 |
|
| 180 |
+
|
| 181 |
+
**4-grams (Word):**
|
| 182 |
+
|
| 183 |
+
| Rank | N-gram | Count |
|
| 184 |
+
|------|--------|-------|
|
| 185 |
+
| 1 | `ᱨᱮᱱᱟᱜ ᱦᱚᱲ ᱞᱮᱠᱷᱟ ᱡᱚᱠᱷᱟ` | 3,279 |
|
| 186 |
+
| 2 | `ᱦᱚᱲ ᱠᱚ ᱛᱟᱦᱮᱸ ᱠᱟᱱᱟ` | 2,960 |
|
| 187 |
+
| 3 | `ᱦᱚᱲ ᱞᱮᱠᱷᱟ ᱡᱚᱠᱷᱟ ᱞᱮᱠᱟᱛᱮ` | 2,711 |
|
| 188 |
+
| 4 | `ᱥᱟᱞ ᱨᱮᱱᱟᱜ ᱦᱚᱲ ᱞᱮᱠᱷᱟ` | 2,039 |
|
| 189 |
+
| 5 | `ᱥᱟᱶᱛᱟ ᱩᱛᱷᱱᱟᱹᱣ ᱵᱚᱱᱚᱛ ᱨᱮ` | 1,482 |
|
| 190 |
+
|
| 191 |
+
**5-grams (Word):**
|
| 192 |
+
|
| 193 |
+
| Rank | N-gram | Count |
|
| 194 |
+
|------|--------|-------|
|
| 195 |
+
| 1 | `ᱨᱮᱱᱟᱜ ᱦᱚᱲ ᱞᱮᱠᱷᱟ ᱡᱚᱠᱷᱟ ᱞᱮᱠᱟᱛᱮ` | 2,560 |
|
| 196 |
+
| 2 | `ᱥᱟᱞ ᱨᱮᱱᱟᱜ ᱦᱚᱲ ᱞᱮᱠᱷᱟ ᱡᱚᱠᱷᱟ` | 2,014 |
|
| 197 |
+
| 3 | `ᱠᱚ ᱛᱟᱦᱮᱸ ᱠᱟᱱᱟ ᱚᱸᱰᱮ ᱠᱷᱚᱱ` | 639 |
|
| 198 |
+
| 4 | `ᱦᱚᱲ ᱠᱚ ᱛᱟᱦᱮᱸ ᱠᱟᱱᱟ ᱚᱸᱰᱮ` | 622 |
|
| 199 |
+
| 5 | `ᱨᱮᱱᱟᱜ ᱥᱟᱞ ᱨᱮᱱᱟᱜ ᱦᱚᱲ ᱞᱮᱠᱷᱟ` | 599 |
|
| 200 |
+
|
| 201 |
+
**2-grams (Subword):**
|
| 202 |
+
|
| 203 |
+
| Rank | N-gram | Count |
|
| 204 |
+
|------|--------|-------|
|
| 205 |
+
| 1 | `ᱟ _` | 532,897 |
|
| 206 |
+
| 2 | `_ ᱠ` | 452,845 |
|
| 207 |
+
| 3 | `_ ᱨ` | 441,511 |
|
| 208 |
+
| 4 | `ᱨ ᱮ` | 427,576 |
|
| 209 |
+
| 5 | `ᱮ _` | 424,447 |
|
| 210 |
+
|
| 211 |
+
**3-grams (Subword):**
|
| 212 |
+
|
| 213 |
+
| Rank | N-gram | Count |
|
| 214 |
+
|------|--------|-------|
|
| 215 |
+
| 1 | `_ ᱨ ᱮ` | 359,020 |
|
| 216 |
+
| 2 | `ᱟ ᱜ _` | 216,961 |
|
| 217 |
+
| 3 | `ᱨ ᱮ _` | 206,913 |
|
| 218 |
+
| 4 | `_ ᱫ ᱚ` | 193,101 |
|
| 219 |
+
| 5 | `ᱫ ᱚ _` | 184,355 |
|
| 220 |
+
|
| 221 |
+
**4-grams (Subword):**
|
| 222 |
+
|
| 223 |
+
| Rank | N-gram | Count |
|
| 224 |
+
|------|--------|-------|
|
| 225 |
+
| 1 | `_ ᱨ ᱮ _` | 183,663 |
|
| 226 |
+
| 2 | `_ ᱫ ᱚ _` | 173,539 |
|
| 227 |
+
| 3 | `ᱮ ᱱ ᱟ ᱜ` | 121,241 |
|
| 228 |
+
| 4 | `ᱟ _ ᱾ _` | 118,531 |
|
| 229 |
+
| 5 | `_ ᱟ ᱨ _` | 109,370 |
|
| 230 |
+
|
| 231 |
+
**5-grams (Subword):**
|
| 232 |
+
|
| 233 |
+
| Rank | N-gram | Count |
|
| 234 |
+
|------|--------|-------|
|
| 235 |
+
| 1 | `ᱮ ᱱ ᱟ ᱜ _` | 88,897 |
|
| 236 |
+
| 2 | `_ ᱠ ᱟ ᱱ ᱟ` | 77,004 |
|
| 237 |
+
| 3 | `ᱨ ᱮ ᱱ ᱟ ᱜ` | 76,395 |
|
| 238 |
+
| 4 | `_ ᱨ ᱮ ᱱ ᱟ` | 76,338 |
|
| 239 |
+
| 5 | `ᱠ ᱟ ᱱ ᱟ _` | 56,559 |
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
### Key Findings
|
| 243 |
+
|
| 244 |
+
- **Best Perplexity:** 2-gram (subword) with 373
|
| 245 |
+
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 246 |
+
- **Coverage:** Top-1000 patterns cover ~30% of corpus
|
| 247 |
+
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 248 |
+
|
| 249 |
+
---
|
| 250 |
+
## 3. Markov Chain Evaluation
|
| 251 |
+
|
| 252 |
+

|
| 253 |
+
|
| 254 |
+

|
| 255 |
+
|
| 256 |
+

|
| 257 |
+
|
| 258 |
+
### Results
|
| 259 |
+
|
| 260 |
+
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 261 |
+
|---------|---------|-------------|------------|------------------|-----------------|----------------|
|
| 262 |
+
| **1** | Word | 0.7025 | 1.627 | 5.73 | 274,818 | 29.8% |
|
| 263 |
+
| **1** | Subword | 0.8387 | 1.788 | 5.63 | 5,505 | 16.1% |
|
| 264 |
+
| **2** | Word | 0.2957 | 1.228 | 1.89 | 1,572,360 | 70.4% |
|
| 265 |
+
| **2** | Subword | 0.6641 | 1.585 | 4.27 | 30,957 | 33.6% |
|
| 266 |
+
| **3** | Word | 0.1263 | 1.091 | 1.26 | 2,962,389 | 87.4% |
|
| 267 |
+
| **3** | Subword | 0.7552 | 1.688 | 3.97 | 132,005 | 24.5% |
|
| 268 |
+
| **4** | Word | 0.0549 🏆 | 1.039 | 1.09 | 3,737,893 | 94.5% |
|
| 269 |
+
| **4** | Subword | 0.6689 | 1.590 | 2.92 | 523,754 | 33.1% |
|
| 270 |
+
|
| 271 |
+
### Generated Text Samples (Word-based)
|
| 272 |
+
|
| 273 |
+
Below are text samples generated from each word-based Markov chain model:
|
| 274 |
+
|
| 275 |
+
**Context Size 1:**
|
| 276 |
+
|
| 277 |
+
1. `ᱨᱮ ᱚᱠᱷᱟ ᱫᱚ ᱯᱚᱱᱚᱛ ᱯᱚᱪᱷᱤᱢ ᱵᱟᱝᱞᱟ ᱨᱮ ᱟᱭᱢᱟ ᱠᱟ ᱥᱱᱤ ᱵᱚᱠᱠᱷᱟᱞᱤ ᱫᱚ ᱥᱮᱨᱢᱟ ᱨᱮᱭᱟᱜ ᱟᱢᱮᱨᱤᱠᱟᱱ ᱮᱠᱥᱯᱨᱮᱥ`
|
| 278 |
+
2. `ᱫᱚ ᱢᱤᱴᱚᱨ ᱮᱱᱴᱨᱤ ᱞᱮᱠᱟᱛᱮ ᱱᱚᱸᱰᱮ ᱱᱟᱜ ᱥᱟᱥᱚᱱ ᱨᱮᱱᱟᱜ ᱪᱮᱛᱟᱱ ᱨᱮᱠᱚ ᱨᱚᱲᱼᱟ ᱡᱚᱨᱡᱽ ᱢᱟᱭᱨᱤᱱ ᱟᱜ ᱡᱟᱱᱟᱢ ᱞᱮᱱᱟᱭ`
|
| 279 |
+
3. `ᱟᱨ ᱰᱤᱨᱮᱠᱴᱚᱨ ᱞᱟᱹᱜᱤᱫ ᱛᱮ ᱜᱮᱲᱤᱭᱟᱠᱚᱞᱟ ᱟᱹᱛᱩ ᱠᱟᱱᱟ ᱮᱱᱤᱢᱮᱥᱚᱱ ᱨᱮ ᱛᱮᱭᱟᱨ ᱞᱮᱫᱟ ᱟᱭᱢᱟ ᱫᱤᱱ ᱠᱚ ᱵᱟᱰᱟᱭ ᱛᱟᱦᱮᱸᱫ`
|
| 280 |
+
|
| 281 |
+
**Context Size 2:**
|
| 282 |
+
|
| 283 |
+
1. `ᱩᱱᱤ ᱫᱚ ᱰᱤᱨᱮᱠᱴᱚᱨ ᱰᱟᱭᱱᱟ ᱞᱳᱨᱮᱱ ᱥᱟᱶ ᱢᱤᱫ ᱥᱟᱹᱜᱟᱹᱭ ᱢᱮᱱᱟᱜ ᱟ ᱫᱚ ᱱᱤᱭᱟᱹ ᱥᱤᱧᱚᱛ ᱨᱮ ᱦᱳᱢᱤᱭᱳᱯᱮᱛᱷᱤ ᱨᱮᱭᱟᱜ ᱮᱛᱦᱚᱵ`
|
| 284 |
+
2. `ᱛᱟᱦᱮᱸ ᱠᱟᱱᱟ ᱦᱟᱣᱲᱟ ᱱᱤᱭᱩ ᱡᱚᱞᱯᱟᱭᱜᱩᱲᱤ ᱵᱚᱱᱫᱮ ᱵᱷᱟᱨᱚᱛ ᱮᱠᱥᱯᱨᱮᱥ ᱞᱮᱠᱟᱛᱮ ᱪᱟᱞᱟᱣ ᱞᱮᱱᱟ ᱛᱟᱦᱮᱸᱫ ᱥᱟᱹᱠᱷᱭᱟᱹᱛ ᱵᱟᱦᱨᱮ ᱡᱚᱱᱚᱲ...`
|
| 285 |
+
3. `ᱡᱟᱦᱟᱸ ᱫᱚ ᱡᱮᱜᱮᱫ ᱵᱤᱨᱫᱟᱹᱜᱟᱲ ᱨᱮᱭᱟᱜ ᱯᱷᱮᱠᱟᱞᱴᱤ ᱚᱯᱷ ᱟᱨᱴᱥ ᱮ ᱯᱩᱨᱟᱹᱣ ᱞᱮᱫ ᱛᱟᱦᱮᱸᱫ ᱨᱮ ᱟᱫᱽᱨᱟ ᱵᱷᱮᱫᱩᱣᱟᱥᱳᱞ ᱥᱮᱠᱴᱚᱨ ᱟᱨ`
|
| 286 |
+
|
| 287 |
+
**Context Size 3:**
|
| 288 |
+
|
| 289 |
+
1. `ᱠᱚ ᱛᱟᱦᱮᱸ ᱠᱟᱱᱟ ᱟᱨ ᱢᱤᱫᱴᱟᱹᱝ ᱥᱮᱠᱮᱱᱰᱟᱨᱤ ᱤᱥᱠᱩᱞ ᱛᱟᱦᱮᱸ ᱠᱟᱱᱟ ᱦᱚᱲᱢᱚ ᱥᱟᱶᱟᱨ ᱵᱟᱱᱫᱳᱣᱟᱱ ᱨᱮ ᱓᱐ ᱜᱚᱴᱟᱝ ᱵᱮᱰ ᱟᱜ ᱵᱮᱞᱠᱩᱨᱤ`
|
| 290 |
+
2. `ᱥᱟᱶᱛᱟ ᱩᱛᱷᱱᱟᱹᱣ ᱵᱚᱱᱚᱛ ᱨᱤᱱ ᱜᱩᱴ ᱦᱚᱲ ᱮᱞ ᱨᱤᱱ ᱑᱗ ᱐᱔ ᱠᱚ ᱦᱩᱭᱩᱜ ᱠᱟᱱᱟ ᱱᱚᱸᱰᱮ ᱠᱚ ᱛᱟᱦᱮᱸᱱ ᱠᱟᱱ ᱵᱟᱡᱟᱨ`
|
| 291 |
+
3. `ᱨᱮ ᱩᱱᱤ ᱫᱚ ᱟᱯᱱᱟ ᱥᱟᱯᱱᱟ ᱢᱚᱱᱤ ᱢᱚᱱᱤ ᱯᱷᱤᱞᱢ ᱨᱮ ᱠᱟ ᱠᱚᱱᱱᱚᱰᱟ ᱨᱮ ᱑᱐᱐ ᱜᱚᱴᱟᱝ ᱚᱱᱚᱞ ᱢᱮᱱᱟᱜᱼᱟ ᱱᱟᱜᱟᱢ ᱡᱟᱨᱢᱟᱱ`
|
| 292 |
+
|
| 293 |
+
**Context Size 4:**
|
| 294 |
+
|
| 295 |
+
1. `ᱨᱮᱱᱟᱜ ᱦᱚᱲ ᱞᱮᱠᱷᱟ ᱡᱚᱠᱷᱟ ᱛᱟᱦᱮᱸ ᱠᱟᱱᱟ ᱱᱚᱣᱟ ᱥᱟᱞ ᱨᱮ ᱵᱟᱲᱦᱟᱣ ᱠᱟᱛᱮ ᱦᱚᱲ ᱠᱚ ᱦᱩᱭ ᱮᱱᱟ ᱟᱨ ᱟᱨ ᱛᱟᱞᱟ ᱨᱮ`
|
| 296 |
+
2. `ᱦᱚᱲ ᱠᱚ ᱛᱟᱦᱮᱸ ᱠᱟᱱᱟ ᱚᱸᱰᱮ ᱠᱷᱚᱱ ᱒᱙ ᱘᱒᱗ ᱗᱙ ᱔᱖ ᱠᱚᱲᱟ ᱟᱨ ᱑᱘ ᱙᱖᱙ ᱔᱙ ᱓᱒ ᱛᱤᱨᱞᱟᱹ ᱠᱚ ᱛᱟᱦᱮᱸ`
|
| 297 |
+
3. `ᱦᱚᱲ ᱞᱮᱠᱷᱟ ᱡᱚᱠᱷᱟ ᱞᱮᱠᱟᱛᱮ ᱨᱟᱭᱯᱩᱨ ᱕ ᱔᱗᱐ ᱥᱩᱠᱫᱚᱞ ᱑᱓ ᱐᱙᱓ ᱟᱨ ᱵᱚᱰ ᱵᱚᱰ ᱔ ᱕᱕᱘ ᱜᱚᱞᱥᱤ ᱑ ᱥᱟᱶᱛᱟ ᱩᱛᱷᱱᱟᱹᱣ`
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
### Generated Text Samples (Subword-based)
|
| 301 |
+
|
| 302 |
+
Below are text samples generated from each subword-based Markov chain model:
|
| 303 |
+
|
| 304 |
+
**Context Size 1:**
|
| 305 |
+
|
| 306 |
+
1. `_ᱜ_,_ᱨ_ᱡ_ᱩᱴᱤᱫᱚᱣ_`
|
| 307 |
+
2. `ᱟᱨᱩᱜ_ᱢ_ᱠᱴᱤᱨᱤᱞ_ᱠᱷ`
|
| 308 |
+
3. `ᱚᱦᱚ_᱒_ᱢᱤ_ᱠᱷᱟᱨᱮᱸᱠ`
|
| 309 |
+
|
| 310 |
+
**Context Size 2:**
|
| 311 |
+
|
| 312 |
+
1. `ᱟ_ᱞᱟᱹ_ᱨᱮ_ᱱᱤᱭᱟᱱ_ᱠᱚ`
|
| 313 |
+
2. `_ᱠᱷᱟᱣ_ᱨᱟᱸᱦᱮ',_ᱵᱟᱡ`
|
| 314 |
+
3. `_ᱨᱮ_ᱟᱨ_᱖_ᱠᱚ_ᱪᱟᱞ,_`
|
| 315 |
+
|
| 316 |
+
**Context Size 3:**
|
| 317 |
+
|
| 318 |
+
1. `_ᱨᱮᱱᱟᱜᱼᱟ_bum_ᱵᱤᱥᱟᱱ`
|
| 319 |
+
2. `ᱟᱜ_ᱯᱟᱹᱨᱤ_ᱢᱟᱞᱟᱜ_ᱢᱟᱨ`
|
| 320 |
+
3. `ᱨᱮ_᱑᱒0,᱖᱔᱐_ᱟᱜ_ᱠᱟᱱ_`
|
| 321 |
+
|
| 322 |
+
**Context Size 4:**
|
| 323 |
+
|
| 324 |
+
1. `_ᱨᱮ_ᱯᱷᱮᱰ_ᱠᱚ_ᱚᱲᱟᱜ_ᱨᱚ`
|
| 325 |
+
2. `_ᱫᱚ_ᱵᱤᱫᱷᱟᱱᱤ_ᱡᱟᱦᱟᱸ_ᱫ`
|
| 326 |
+
3. `ᱮᱱᱟᱜ_ᱦᱚᱸ_ᱨᱤᱱ_ᱠᱟᱱ_ᱫᱷ`
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
### Key Findings
|
| 330 |
+
|
| 331 |
+
- **Best Predictability:** Context-4 (word) with 94.5% predictability
|
| 332 |
+
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 333 |
+
- **Memory Trade-off:** Larger contexts require more storage (523,754 contexts)
|
| 334 |
+
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 335 |
+
|
| 336 |
+
---
|
| 337 |
+
## 4. Vocabulary Analysis
|
| 338 |
+
|
| 339 |
+

|
| 340 |
+
|
| 341 |
+

|
| 342 |
+
|
| 343 |
+

|
| 344 |
+
|
| 345 |
+
### Statistics
|
| 346 |
+
|
| 347 |
+
| Metric | Value |
|
| 348 |
+
|--------|-------|
|
| 349 |
+
| Vocabulary Size | 104,851 |
|
| 350 |
+
| Total Tokens | 4,586,629 |
|
| 351 |
+
| Mean Frequency | 43.74 |
|
| 352 |
+
| Median Frequency | 3 |
|
| 353 |
+
| Frequency Std Dev | 1084.86 |
|
| 354 |
+
|
| 355 |
+
### Most Common Words
|
| 356 |
+
|
| 357 |
+
| Rank | Word | Frequency |
|
| 358 |
+
|------|------|-----------|
|
| 359 |
+
| 1 | ᱨᱮ | 194,411 |
|
| 360 |
+
| 2 | ᱫᱚ | 174,300 |
|
| 361 |
+
| 3 | ᱟᱨ | 110,495 |
|
| 362 |
+
| 4 | ᱨᱮᱱᱟᱜ | 75,922 |
|
| 363 |
+
| 5 | ᱠᱚ | 74,024 |
|
| 364 |
+
| 6 | ᱠᱟᱱᱟ | 64,170 |
|
| 365 |
+
| 7 | ᱠᱷᱚᱱ | 46,273 |
|
| 366 |
+
| 8 | ᱩᱱᱤ | 40,257 |
|
| 367 |
+
| 9 | ᱢᱤᱫ | 40,250 |
|
| 368 |
+
| 10 | ᱨᱮᱭᱟᱜ | 38,160 |
|
| 369 |
+
|
| 370 |
+
### Least Common Words (from vocabulary)
|
| 371 |
+
|
| 372 |
+
| Rank | Word | Frequency |
|
| 373 |
+
|------|------|-----------|
|
| 374 |
+
| 1 | ᱜᱟᱲᱤᱢᱟᱭ | 2 |
|
| 375 |
+
| 2 | ᱜᱨᱟᱱᱰᱤᱝ | 2 |
|
| 376 |
+
| 3 | ᱟᱯᱚᱫᱟ | 2 |
|
| 377 |
+
| 4 | ᱵᱮᱵᱚᱥᱛᱟᱯᱚᱱᱟ | 2 |
|
| 378 |
+
| 5 | ᱢᱩᱦᱟᱹᱱᱟᱹ | 2 |
|
| 379 |
+
| 6 | estuary | 2 |
|
| 380 |
+
| 7 | ᱢᱚᱸᱜᱨᱚᱵᱷ | 2 |
|
| 381 |
+
| 8 | ᱦᱚᱸᱥᱟ | 2 |
|
| 382 |
+
| 9 | ᱞᱮᱛᱤᱯᱩᱨ | 2 |
|
| 383 |
+
| 10 | ᱴᱮᱨᱟᱠᱚᱴᱟ | 2 |
|
| 384 |
+
|
| 385 |
+
### Zipf's Law Analysis
|
| 386 |
+
|
| 387 |
+
| Metric | Value |
|
| 388 |
+
|--------|-------|
|
| 389 |
+
| Zipf Coefficient | 1.1879 |
|
| 390 |
+
| R² (Goodness of Fit) | 0.996295 |
|
| 391 |
+
| Adherence Quality | **excellent** |
|
| 392 |
+
|
| 393 |
+
### Coverage Analysis
|
| 394 |
+
|
| 395 |
+
| Top N Words | Coverage |
|
| 396 |
+
|-------------|----------|
|
| 397 |
+
| Top 100 | 42.8% |
|
| 398 |
+
| Top 1,000 | 71.1% |
|
| 399 |
+
| Top 5,000 | 84.6% |
|
| 400 |
+
| Top 10,000 | 89.1% |
|
| 401 |
+
|
| 402 |
+
### Key Findings
|
| 403 |
+
|
| 404 |
+
- **Zipf Compliance:** R²=0.9963 indicates excellent adherence to Zipf's law
|
| 405 |
+
- **High Frequency Dominance:** Top 100 words cover 42.8% of corpus
|
| 406 |
+
- **Long Tail:** 94,851 words needed for remaining 10.9% coverage
|
| 407 |
+
|
| 408 |
+
---
|
| 409 |
+
## 5. Word Embeddings Evaluation
|
| 410 |
+
|
| 411 |
+

|
| 412 |
+
|
| 413 |
+

|
| 414 |
+
|
| 415 |
+

|
| 416 |
+
|
| 417 |
+

|
| 418 |
+
|
| 419 |
+
|
| 420 |
+
### 5.1 Cross-Lingual Alignment
|
| 421 |
+
|
| 422 |
+

|
| 423 |
+
|
| 424 |
+

|
| 425 |
+
|
| 426 |
+
|
| 427 |
+
### 5.2 Model Comparison
|
| 428 |
+
|
| 429 |
+
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|
| 430 |
+
|-------|-----------|----------|------------------|---------------|----------------|
|
| 431 |
+
| **mono_32d** | 32 | 0.8573 | 0.3536 | N/A | N/A |
|
| 432 |
+
| **mono_64d** | 64 | 0.8443 | 0.2821 | N/A | N/A |
|
| 433 |
+
| **mono_128d** | 128 | 0.7962 | 0.2213 | N/A | N/A |
|
| 434 |
+
| **aligned_32d** | 32 | 0.8573 🏆 | 0.3640 | 0.0320 | 0.1660 |
|
| 435 |
+
| **aligned_64d** | 64 | 0.8443 | 0.2836 | 0.0440 | 0.2060 |
|
| 436 |
+
| **aligned_128d** | 128 | 0.7962 | 0.2203 | 0.0800 | 0.2960 |
|
| 437 |
+
|
| 438 |
+
### Key Findings
|
| 439 |
+
|
| 440 |
+
- **Best Isotropy:** aligned_32d with 0.8573 (more uniform distribution)
|
| 441 |
+
- **Semantic Density:** Average pairwise similarity of 0.2875. Lower values indicate better semantic separation.
|
| 442 |
+
- **Alignment Quality:** Aligned models achieve up to 8.0% R@1 in cross-lingual retrieval.
|
| 443 |
+
- **Recommendation:** 128d aligned for best cross-lingual performance
|
| 444 |
+
|
| 445 |
+
---
|
| 446 |
+
## 6. Morphological Analysis (Experimental)
|
| 447 |
+
|
| 448 |
+
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
|
| 449 |
+
|
| 450 |
+
### 6.1 Productivity & Complexity
|
| 451 |
+
|
| 452 |
+
| Metric | Value | Interpretation | Recommendation |
|
| 453 |
+
|--------|-------|----------------|----------------|
|
| 454 |
+
| Productivity Index | **5.000** | High morphological productivity | Reliable analysis |
|
| 455 |
+
| Idiomaticity Gap | **-0.348** | Low formulaic content | - |
|
| 456 |
+
|
| 457 |
+
### 6.2 Affix Inventory (Productive Units)
|
| 458 |
+
|
| 459 |
+
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
|
| 460 |
+
|
| 461 |
+
#### Productive Prefixes
|
| 462 |
+
| Prefix | Examples |
|
| 463 |
+
|--------|----------|
|
| 464 |
+
| `-ᱥ` | ᱥᱵᱫᱚ, ᱥᱨᱚᱵᱷᱟᱱ, ᱥᱤᱧᱟᱛ |
|
| 465 |
+
| `-ᱠ` | ᱠᱷᱮᱢᱟᱨ, ᱠᱳᱲᱚ, ᱠᱟᱞᱮ |
|
| 466 |
+
| `-ᱵ` | ᱵᱤᱨᱫᱟᱹᱜᱟᱲᱤᱭᱩᱱᱤᱵᱷᱟᱨᱥᱤᱴᱮᱴ, ᱵᱷᱳ, ᱵᱟᱫᱽᱞᱟ |
|
| 467 |
+
| `-ᱥᱟ` | ᱥᱟᱠᱩᱱᱛᱚᱞᱟ, ᱥᱟᱭᱟᱱᱟ, ᱥᱟᱵᱽᱢᱟᱨᱥᱟᱞ |
|
| 468 |
+
| `-ᱟ` | ᱟᱣᱚ, ᱟᱵᱽᱫᱩᱞᱟᱦ, ᱟᱭᱹ |
|
| 469 |
+
| `-ᱠᱟ` | ᱠᱟᱞᱮ, ᱠᱟᱨᱟᱭᱠᱟᱞ, ᱠᱟᱨᱠᱟᱛ |
|
| 470 |
+
| `-ᱵᱟ` | ᱵᱟᱫᱽᱞᱟ, ᱵᱟᱯᱞᱟᱱᱤᱡ, ᱵᱟᱴᱚᱢ |
|
| 471 |
+
| `-ᱯ` | ᱯᱟᱱᱛᱷᱟᱠᱚ, ᱯᱷᱤᱠᱟᱨᱰ, ᱯᱷᱟᱭᱡᱟᱵᱟᱫᱽ |
|
| 472 |
+
|
| 473 |
+
#### Productive Suffixes
|
| 474 |
+
| Suffix | Examples |
|
| 475 |
+
|--------|----------|
|
| 476 |
+
| `-ᱟ` | ᱛᱷᱩᱱᱤᱜᱟ, ᱵᱟᱫᱽᱞᱟ, ᱢᱟᱱᱤᱥᱟ |
|
| 477 |
+
| `-ᱤ` | ᱜᱳᱢᱚᱛᱤ, ᱡᱚᱱᱢᱟ���ᱴᱚᱢᱤ, ᱡᱤᱵᱩᱴᱤ |
|
| 478 |
+
| `-ᱨ` | ᱠᱷᱮᱢᱟᱨ, ᱪᱮᱱᱫᱩᱨ, ᱠᱣᱟᱰᱨᱮᱝᱜᱩᱞᱟᱨ |
|
| 479 |
+
| `-ᱱ` | ᱥᱨᱚᱵᱷᱟᱱ, ᱥᱮᱬᱟᱦᱟᱱ, ᱟᱯᱩᱱ |
|
| 480 |
+
| `-ᱚᱱ` | ᱰᱤᱵᱷᱤᱡᱚᱱ, ᱥᱨᱤᱱᱤᱠᱮᱛᱚᱱ, ᱡᱟᱢᱚᱱ |
|
| 481 |
+
| `-ᱟᱨ` | ᱠᱷᱮᱢᱟᱨ, ᱠᱣᱟᱰᱨᱮᱝᱜᱩᱞᱟᱨ, ᱥᱴᱮᱞᱟᱨ |
|
| 482 |
+
| `-ᱟᱱ` | ᱥᱨᱚᱵᱷᱟᱱ, ᱥᱮᱬᱟᱦᱟᱱ, ᱨᱟᱡᱽᱟᱹᱨᱤᱭᱟᱱ |
|
| 483 |
+
| `-ᱞ` | ᱳᱝᱜᱳᱞ, ᱥᱟᱵᱽᱢᱟᱨᱥᱟᱞ, ᱠᱟᱨᱟᱭᱠᱟᱞ |
|
| 484 |
+
|
| 485 |
+
### 6.3 Bound Stems (Lexical Roots)
|
| 486 |
+
|
| 487 |
+
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
|
| 488 |
+
|
| 489 |
+
| Stem | Cohesion | Substitutability | Examples |
|
| 490 |
+
|------|----------|------------------|----------|
|
| 491 |
+
| `ᱟᱦᱮᱸ` | 2.13x | 43 contexts | ᱪᱟᱦᱮᱸ, ᱠᱟᱦᱮᱸ, ᱴᱟᱦᱮᱸ |
|
| 492 |
+
| `ᱟᱹᱨᱥ` | 2.33x | 28 contexts | ᱯᱟᱹᱨᱥ, ᱟᱹᱨᱥᱤ, ᱠᱟᱹᱨᱥᱤ |
|
| 493 |
+
| `ᱟᱹᱜᱤ` | 2.06x | 41 contexts | ᱛᱟᱹᱜᱤ, ᱜᱟᱹᱜᱤ, ᱞᱟᱹᱜᱤ |
|
| 494 |
+
| `ᱮᱥᱚᱱ` | 1.90x | 47 contexts | ᱠᱮᱥᱚᱱ, ᱴᱮᱥᱚᱱ, ᱡᱮᱥᱚᱱ |
|
| 495 |
+
| `ᱞᱟᱹᱜ` | 2.30x | 23 contexts | ᱞᱟᱹᱜᱽ, ᱞᱟᱹᱜᱤ, ᱞᱟᱹᱜᱫ |
|
| 496 |
+
| `ᱹᱨᱥᱤ` | 2.40x | 19 contexts | ᱟᱹᱨᱥᱤ, ᱯᱹᱨᱥᱤ, ᱠᱟᱹᱨᱥᱤ |
|
| 497 |
+
| `ᱮᱱᱟᱣ` | 2.03x | 33 contexts | ᱢᱮᱱᱟᱣ, ᱵᱮᱱᱟᱣ, ᱞᱮᱱᱟᱣ |
|
| 498 |
+
| `ᱷᱤᱞᱢ` | 2.47x | 15 contexts | 0ᱷᱤᱞᱢ, ᱳᱷᱤᱞᱢ, ᱯᱷᱤᱞᱢ |
|
| 499 |
+
| `ᱱᱟᱜᱼ` | 2.18x | 20 contexts | ᱟᱱᱟᱜᱼ, ᱮᱱᱟᱜᱼᱟ, ᱟᱱᱟᱜᱼᱟ |
|
| 500 |
+
| `ᱹᱜᱤᱫ` | 2.38x | 15 contexts | ᱟᱹᱜᱤᱫ, ᱞᱟᱹᱜᱤᱫ, ᱯᱟᱹᱜᱤᱫ |
|
| 501 |
+
| `ᱮᱠᱟᱛ` | 2.15x | 20 contexts | ᱞᱮᱠᱟᱛ, ᱪᱮᱠᱟᱛᱮ, ᱞᱮᱠᱟᱛᱮ |
|
| 502 |
+
| `ᱟᱦᱟᱸ` | 1.70x | 45 contexts | ᱦᱟᱦᱟᱸ, ᱛᱟᱦᱟᱸ, ᱨᱟᱦᱟᱸ |
|
| 503 |
+
|
| 504 |
+
### 6.4 Affix Compatibility (Co-occurrence)
|
| 505 |
+
|
| 506 |
+
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
|
| 507 |
+
|
| 508 |
+
| Prefix | Suffix | Frequency | Examples |
|
| 509 |
+
|--------|--------|-----------|----------|
|
| 510 |
+
| `-ᱵ` | `-ᱤ` | 74 words | ᱵᱤᱥᱥᱚᱼᱵᱷᱟᱨᱚᱛᱤ, ᱵᱚᱨᱠᱤ |
|
| 511 |
+
| `-ᱵ` | `-ᱟ` | 73 words | ᱵᱷᱟᱫᱩᱨᱟ, ᱵᱤᱛᱟ |
|
| 512 |
+
| `-ᱥ` | `-ᱟ` | 70 words | ᱥᱚᱨᱚᱱᱠᱷᱚᱞᱟ, ᱥᱞᱮᱥᱢᱟ |
|
| 513 |
+
| `-ᱠ` | `-ᱟ` | 66 words | ᱠᱷᱩᱫᱟ, ᱠᱷᱟᱞᱮᱫᱟ |
|
| 514 |
+
| `-ᱥ` | `-ᱤ` | 60 words | ᱥᱳᱱᱤ, ᱥᱤᱝᱡᱤ |
|
| 515 |
+
| `-ᱠ` | `-ᱤ` | 58 words | ᱠᱟᱣᱮᱨᱤ, ᱠᱩᱱᱴᱤ |
|
| 516 |
+
| `-ᱯ` | `-ᱟ` | 57 words | ᱯᱚᱞᱥᱩᱸᱰᱟ, ᱯᱩᱸᱪᱟ |
|
| 517 |
+
| `-ᱵ` | `-ᱨ` | 54 words | ᱵᱷᱚᱣᱟᱱᱤᱯᱩᱨ, ᱵᱷᱤᱴᱤᱨ |
|
| 518 |
+
| `-ᱵ` | `-ᱱ` | 52 words | ᱵᱨᱤᱱᱫᱟᱣᱟᱱ, ᱵᱚᱸᱜᱟᱛᱷᱟᱱ |
|
| 519 |
+
| `-ᱯ` | `-ᱤ` | 50 words | ᱯᱟᱹᱫᱽᱨᱤ, ᱯᱨᱚᱡᱟᱛᱚᱱᱛᱨᱤ |
|
| 520 |
+
|
| 521 |
+
### 6.5 Recursive Morpheme Segmentation
|
| 522 |
+
|
| 523 |
+
Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`).
|
| 524 |
+
|
| 525 |
+
| Word | Suggested Split | Confidence | Stem |
|
| 526 |
+
|------|-----------------|------------|------|
|
| 527 |
+
| ᱫᱟᱫᱮᱝᱜᱤᱨᱤ | **`ᱫᱟᱫᱮᱝᱜ-ᱤ-ᱨᱤ`** | 7.5 | `ᱤ` |
|
| 528 |
+
| ᱵᱚᱨᱟᱵᱟᱡᱟᱨ | **`ᱵᱚ-ᱨᱟ-ᱵᱟᱡᱟᱨ`** | 7.5 | `ᱵᱟᱡᱟᱨ` |
|
| 529 |
+
| ᱥᱟᱬᱮᱸᱥᱤᱭᱟ | **`ᱥᱟᱬᱮᱸᱥ-ᱤ-ᱭᱟ`** | 7.5 | `ᱤ` |
|
| 530 |
+
| ᱜᱚᱢᱠᱮᱭᱟᱱᱤ | **`ᱜᱚᱢᱠᱮ-ᱭᱟ-ᱱᱤ`** | 6.0 | `ᱜᱚᱢᱠᱮ` |
|
| 531 |
+
| ᱢᱮᱠᱟᱱᱤᱠᱮᱞ | **`ᱢᱮ-ᱠᱟ-ᱱᱤᱠᱮᱞ`** | 6.0 | `ᱱᱤᱠᱮᱞ` |
|
| 532 |
+
| ᱥᱟᱵᱰᱤᱵᱤᱡᱚᱱ | **`ᱥᱟ-ᱵ-ᱰᱤᱵᱤᱡᱚᱱ`** | 6.0 | `ᱰᱤᱵᱤᱡᱚᱱ` |
|
| 533 |
+
| ᱨᱟᱡᱟᱵᱟᱡᱟᱨ | **`ᱨᱟ-ᱡᱟ-ᱵᱟᱡᱟᱨ`** | 6.0 | `ᱵᱟᱡᱟᱨ` |
|
| 534 |
+
| strangers | **`stranger-s`** | 4.5 | `stranger` |
|
| 535 |
+
| proposals | **`proposal-s`** | 4.5 | `proposal` |
|
| 536 |
+
| ᱨᱤᱯᱷᱟᱭᱤᱱᱰ | **`ᱨᱤᱯᱷᱟᱭᱤᱱ-ᱰ`** | 4.5 | `ᱨᱤᱯᱷᱟᱭᱤᱱ` |
|
| 537 |
+
| ᱟᱹᱠᱷᱨᱤᱧᱟᱱ | **`ᱟᱹᱠᱷᱨᱤᱧ-ᱟᱱ`** | 4.5 | `ᱟᱹᱠᱷᱨᱤᱧ` |
|
| 538 |
+
| ᱯᱨᱚᱠᱨᱤᱛᱤᱥ | **`ᱯᱨᱚᱠᱨᱤᱛᱤ-ᱥ`** | 4.5 | `ᱯᱨᱚᱠᱨᱤᱛᱤ` |
|
| 539 |
+
| instituted | **`institute-d`** | 4.5 | `institute` |
|
| 540 |
+
| ᱯᱨᱳᱰᱟᱠᱥᱟᱱᱥ | **`ᱯᱨᱳᱰᱟᱠᱥᱟᱱ-ᱥ`** | 4.5 | `ᱯᱨᱳᱰᱟᱠᱥᱟᱱ` |
|
| 541 |
+
| quarterfinals | **`quarterfinal-s`** | 4.5 | `quarterfinal` |
|
| 542 |
+
|
| 543 |
+
### 6.6 Linguistic Interpretation
|
| 544 |
+
|
| 545 |
+
> **Automated Insight:**
|
| 546 |
+
The language Santali shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
|
| 547 |
+
|
| 548 |
+
---
|
| 549 |
+
## 7. Summary & Recommendations
|
| 550 |
+
|
| 551 |
+

|
| 552 |
+
|
| 553 |
+
### Production Recommendations
|
| 554 |
+
|
| 555 |
+
| Component | Recommended | Rationale |
|
| 556 |
+
|-----------|-------------|-----------|
|
| 557 |
+
| Tokenizer | **64k BPE** | Best compression (4.33x) |
|
| 558 |
+
| N-gram | **2-gram** | Lowest perplexity (373) |
|
| 559 |
+
| Markov | **Context-4** | Highest predictability (94.5%) |
|
| 560 |
+
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 561 |
+
|
| 562 |
+
|
| 563 |
+
---
|
| 564 |
+
## Appendix: Metrics Glossary & Interpretation Guide
|
| 565 |
+
|
| 566 |
+
This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.
|
| 567 |
+
|
| 568 |
+
### Tokenizer Metrics
|
| 569 |
+
|
| 570 |
+
**Compression Ratio**
|
| 571 |
+
> *Definition:* The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.
|
| 572 |
+
>
|
| 573 |
+
> *Intuition:* Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.
|
| 574 |
+
>
|
| 575 |
+
> *What to seek:* Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.
|
| 576 |
+
|
| 577 |
+
**Average Token Length (Fertility)**
|
| 578 |
+
> *Definition:* Mean number of characters per token produced by the tokenizer.
|
| 579 |
+
>
|
| 580 |
+
> *Intuition:* Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.
|
| 581 |
+
>
|
| 582 |
+
> *What to seek:* Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.
|
| 583 |
+
|
| 584 |
+
**Unknown Token Rate (OOV Rate)**
|
| 585 |
+
> *Definition:* Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.
|
| 586 |
+
>
|
| 587 |
+
> *Intuition:* Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.
|
| 588 |
+
>
|
| 589 |
+
> *What to seek:* Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.
|
| 590 |
+
|
| 591 |
+
### N-gram Model Metrics
|
| 592 |
+
|
| 593 |
+
**Perplexity**
|
| 594 |
+
> *Definition:* Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.
|
| 595 |
+
>
|
| 596 |
+
> *Intuition:* If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.
|
| 597 |
+
>
|
| 598 |
+
> *What to seek:* Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.
|
| 599 |
+
|
| 600 |
+
**Entropy**
|
| 601 |
+
> *Definition:* Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.
|
| 602 |
+
>
|
| 603 |
+
> *Intuition:* High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.
|
| 604 |
+
>
|
| 605 |
+
> *What to seek:* Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.
|
| 606 |
+
|
| 607 |
+
**Coverage (Top-K)**
|
| 608 |
+
> *Definition:* Percentage of corpus occurrences explained by the top K most frequent n-grams.
|
| 609 |
+
>
|
| 610 |
+
> *Intuition:* High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.
|
| 611 |
+
>
|
| 612 |
+
> *What to seek:* Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.
|
| 613 |
+
|
| 614 |
+
### Markov Chain Metrics
|
| 615 |
+
|
| 616 |
+
**Average Entropy**
|
| 617 |
+
> *Definition:* Mean entropy across all contexts, measuring average uncertainty in next-word prediction.
|
| 618 |
+
>
|
| 619 |
+
> *Intuition:* Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).
|
| 620 |
+
>
|
| 621 |
+
> *What to seek:* Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.
|
| 622 |
+
|
| 623 |
+
**Branching Factor**
|
| 624 |
+
> *Definition:* Average number of unique next tokens observed for each context.
|
| 625 |
+
>
|
| 626 |
+
> *Intuition:* High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).
|
| 627 |
+
>
|
| 628 |
+
> *What to seek:* Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.
|
| 629 |
+
|
| 630 |
+
**Predictability**
|
| 631 |
+
> *Definition:* Derived metric: (1 - normalized_entropy) × 100%. Indicates how deterministic the model's predictions are.
|
| 632 |
+
>
|
| 633 |
+
> *Intuition:* 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.
|
| 634 |
+
>
|
| 635 |
+
> *What to seek:* Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.
|
| 636 |
+
|
| 637 |
+
### Vocabulary & Zipf's Law Metrics
|
| 638 |
+
|
| 639 |
+
**Zipf's Coefficient**
|
| 640 |
+
> *Definition:* The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.
|
| 641 |
+
>
|
| 642 |
+
> *Intuition:* A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.
|
| 643 |
+
>
|
| 644 |
+
> *What to seek:* Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.
|
| 645 |
+
|
| 646 |
+
**R² (Coefficient of Determination)**
|
| 647 |
+
> *Definition:* Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.
|
| 648 |
+
>
|
| 649 |
+
> *Intuition:* R² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.
|
| 650 |
+
>
|
| 651 |
+
> *What to seek:* R² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.
|
| 652 |
+
|
| 653 |
+
**Vocabulary Coverage**
|
| 654 |
+
> *Definition:* Cumulative percentage of corpus tokens accounted for by the top N words.
|
| 655 |
+
>
|
| 656 |
+
> *Intuition:* Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.
|
| 657 |
+
>
|
| 658 |
+
> *What to seek:* Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.
|
| 659 |
+
|
| 660 |
+
### Word Embedding Metrics
|
| 661 |
+
|
| 662 |
+
**Isotropy**
|
| 663 |
+
> *Definition:* Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.
|
| 664 |
+
>
|
| 665 |
+
> *Intuition:* High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.
|
| 666 |
+
>
|
| 667 |
+
> *What to seek:* Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.
|
| 668 |
+
|
| 669 |
+
**Average Norm**
|
| 670 |
+
> *Definition:* Mean magnitude (L2 norm) of word vectors in the embedding space.
|
| 671 |
+
>
|
| 672 |
+
> *Intuition:* Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.
|
| 673 |
+
>
|
| 674 |
+
> *What to seek:* Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).
|
| 675 |
+
|
| 676 |
+
**Cosine Similarity**
|
| 677 |
+
> *Definition:* Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).
|
| 678 |
+
>
|
| 679 |
+
> *Intuition:* Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.
|
| 680 |
+
>
|
| 681 |
+
> *What to seek:* Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.
|
| 682 |
+
|
| 683 |
+
**t-SNE Visualization**
|
| 684 |
+
> *Definition:* t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.
|
| 685 |
+
>
|
| 686 |
+
> *Intuition:* Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.
|
| 687 |
+
>
|
| 688 |
+
> *What to seek:* Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.
|
| 689 |
+
|
| 690 |
+
### General Interpretation Guidelines
|
| 691 |
+
|
| 692 |
+
1. **Compare within model families:** Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
|
| 693 |
+
2. **Consider trade-offs:** Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
|
| 694 |
+
3. **Context matters:** Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
|
| 695 |
+
4. **Corpus influence:** All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
|
| 696 |
+
5. **Language-specific patterns:** Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.
|
| 697 |
+
|
| 698 |
+
|
| 699 |
+
### Visualizations Index
|
| 700 |
+
|
| 701 |
+
| Visualization | Description |
|
| 702 |
+
|---------------|-------------|
|
| 703 |
+
| Tokenizer Compression | Compression ratios by vocabulary size |
|
| 704 |
+
| Tokenizer Fertility | Average token length by vocabulary |
|
| 705 |
+
| Tokenizer OOV | Unknown token rates |
|
| 706 |
+
| Tokenizer Total Tokens | Total tokens by vocabulary |
|
| 707 |
+
| N-gram Perplexity | Perplexity by n-gram size |
|
| 708 |
+
| N-gram Entropy | Entropy by n-gram size |
|
| 709 |
+
| N-gram Coverage | Top pattern coverage |
|
| 710 |
+
| N-gram Unique | Unique n-gram counts |
|
| 711 |
+
| Markov Entropy | Entropy by context size |
|
| 712 |
+
| Markov Branching | Branching factor by context |
|
| 713 |
+
| Markov Contexts | Unique context counts |
|
| 714 |
+
| Zipf's Law | Frequency-rank distribution with fit |
|
| 715 |
+
| Vocab Frequency | Word frequency distribution |
|
| 716 |
+
| Top 20 Words | Most frequent words |
|
| 717 |
+
| Vocab Coverage | Cumulative coverage curve |
|
| 718 |
+
| Embedding Isotropy | Vector space uniformity |
|
| 719 |
+
| Embedding Norms | Vector magnitude distribution |
|
| 720 |
+
| Embedding Similarity | Word similarity heatmap |
|
| 721 |
+
| Nearest Neighbors | Similar words for key terms |
|
| 722 |
+
| t-SNE Words | 2D word embedding visualization |
|
| 723 |
+
| t-SNE Sentences | 2D sentence embedding visualization |
|
| 724 |
+
| Position Encoding | Encoding method comparison |
|
| 725 |
+
| Model Sizes | Storage requirements |
|
| 726 |
+
| Performance Dashboard | Comprehensive performance overview |
|
| 727 |
+
|
| 728 |
+
---
|
| 729 |
+
## About This Project
|
| 730 |
+
|
| 731 |
+
### Data Source
|
| 732 |
+
|
| 733 |
+
Models trained on [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - a monthly snapshot of Wikipedia articles across 300+ languages.
|
| 734 |
+
|
| 735 |
+
### Project
|
| 736 |
+
|
| 737 |
+
A project by **[Wikilangs](https://wikilangs.org)** - Open-source NLP models for every Wikipedia language.
|
| 738 |
+
|
| 739 |
+
### Maintainer
|
| 740 |
+
|
| 741 |
+
[Omar Kamali](https://omarkamali.com) - [Omneity Labs](https://omneitylabs.com)
|
| 742 |
+
|
| 743 |
+
### Citation
|
| 744 |
+
|
| 745 |
+
If you use these models in your research, please cite:
|
| 746 |
+
|
| 747 |
+
```bibtex
|
| 748 |
+
@misc{wikilangs2025,
|
| 749 |
+
author = {Kamali, Omar},
|
| 750 |
+
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
|
| 751 |
+
year = {2025},
|
| 752 |
+
doi = {10.5281/zenodo.18073153},
|
| 753 |
+
publisher = {Zenodo},
|
| 754 |
+
url = {https://huggingface.co/wikilangs}
|
| 755 |
+
institution = {Omneity Labs}
|
| 756 |
+
}
|
| 757 |
+
```
|
| 758 |
+
|
| 759 |
+
### License
|
| 760 |
+
|
| 761 |
+
MIT License - Free for academic and commercial use.
|
| 762 |
+
|
| 763 |
+
### Links
|
| 764 |
+
|
| 765 |
+
- 🌐 Website: [wikilangs.org](https://wikilangs.org)
|
| 766 |
+
- 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
|
| 767 |
+
- 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
|
| 768 |
+
- 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
|
| 769 |
+
- 🤝 Sponsor: [Featherless AI](https://featherless.ai)
|
| 770 |
+
---
|
| 771 |
+
*Generated by Wikilangs Models Pipeline*
|
| 772 |
+
|
| 773 |
+
*Report Date: 2026-01-10 19:38:19*
|
models/embeddings/aligned/sat_128d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:174feebfd17e44f3ffd513f2257948fe8856224128ff8c2101ff95a14f63d22b
|
| 3 |
+
size 1071293038
|
models/embeddings/aligned/sat_128d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "sat", "dim": 128, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/sat_128d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d6607a7534a29c5307b211eb113e66b583d1103a45089645161dd611973a5bc3
|
| 3 |
+
size 65664
|
models/embeddings/aligned/sat_128d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "sat",
|
| 3 |
+
"dimension": 128,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 7511,
|
| 7 |
+
"vocab_size": 45036
|
| 8 |
+
}
|
models/embeddings/aligned/sat_32d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:adcb30f884fe24dda6c74d846f355cbb0b1c298e2dd788cecb6e3f309709c5df
|
| 3 |
+
size 268705390
|
models/embeddings/aligned/sat_32d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "sat", "dim": 32, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/sat_32d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ba3f13db323698506edc14dbc1073acc83df4ea391c5f5a94eadce271c68e847
|
| 3 |
+
size 4224
|
models/embeddings/aligned/sat_32d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "sat",
|
| 3 |
+
"dimension": 32,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 7511,
|
| 7 |
+
"vocab_size": 45036
|
| 8 |
+
}
|
models/embeddings/aligned/sat_64d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b848fd6c8cf94f424204fc0289aebd38030af09878252b004c59463510d27cc1
|
| 3 |
+
size 536234606
|
models/embeddings/aligned/sat_64d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "sat", "dim": 64, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/sat_64d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b647305f028e9df01769db8234be44e28678372f05c630fea5abf57d1ef2e026
|
| 3 |
+
size 16512
|
models/embeddings/aligned/sat_64d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "sat",
|
| 3 |
+
"dimension": 64,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 7511,
|
| 7 |
+
"vocab_size": 45036
|
| 8 |
+
}
|
models/embeddings/monolingual/sat_128d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:174feebfd17e44f3ffd513f2257948fe8856224128ff8c2101ff95a14f63d22b
|
| 3 |
+
size 1071293038
|
models/embeddings/monolingual/sat_128d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "sat", "dim": 128, "max_seq_len": 512, "is_aligned": false}
|
models/embeddings/monolingual/sat_128d_metadata.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "sat",
|
| 3 |
+
"dimension": 128,
|
| 4 |
+
"version": "monolingual",
|
| 5 |
+
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
+
"min_count": 5,
|
| 8 |
+
"window": 5,
|
| 9 |
+
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 128,
|
| 13 |
+
"threads": 5
|
| 14 |
+
},
|
| 15 |
+
"vocab_size": 45036
|
| 16 |
+
}
|
models/embeddings/monolingual/sat_32d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:adcb30f884fe24dda6c74d846f355cbb0b1c298e2dd788cecb6e3f309709c5df
|
| 3 |
+
size 268705390
|
models/embeddings/monolingual/sat_32d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "sat", "dim": 32, "max_seq_len": 512, "is_aligned": false}
|
models/embeddings/monolingual/sat_32d_metadata.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "sat",
|
| 3 |
+
"dimension": 32,
|
| 4 |
+
"version": "monolingual",
|
| 5 |
+
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
+
"min_count": 5,
|
| 8 |
+
"window": 5,
|
| 9 |
+
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 32,
|
| 13 |
+
"threads": 5
|
| 14 |
+
},
|
| 15 |
+
"vocab_size": 45036
|
| 16 |
+
}
|
models/embeddings/monolingual/sat_64d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b848fd6c8cf94f424204fc0289aebd38030af09878252b004c59463510d27cc1
|
| 3 |
+
size 536234606
|
models/embeddings/monolingual/sat_64d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "sat", "dim": 64, "max_seq_len": 512, "is_aligned": false}
|
models/embeddings/monolingual/sat_64d_metadata.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "sat",
|
| 3 |
+
"dimension": 64,
|
| 4 |
+
"version": "monolingual",
|
| 5 |
+
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
+
"min_count": 5,
|
| 8 |
+
"window": 5,
|
| 9 |
+
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 64,
|
| 13 |
+
"threads": 5
|
| 14 |
+
},
|
| 15 |
+
"vocab_size": 45036
|
| 16 |
+
}
|
models/subword_markov/sat_markov_ctx1_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:57b5d6d0a8aa604bfd78ccc6413df7a15cac0a1625f28983997e869e1a2c232a
|
| 3 |
+
size 252232
|
models/subword_markov/sat_markov_ctx1_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"context_size": 1,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "sat",
|
| 5 |
+
"unique_contexts": 5505,
|
| 6 |
+
"total_transitions": 27667546
|
| 7 |
+
}
|
models/subword_markov/sat_markov_ctx2_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d735cb4aff62dfc52d83010998563ccf4c5eeefa40bd8001a836f63f82ad7f03
|
| 3 |
+
size 1166039
|
models/subword_markov/sat_markov_ctx2_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"context_size": 2,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "sat",
|
| 5 |
+
"unique_contexts": 30957,
|
| 6 |
+
"total_transitions": 27652892
|
| 7 |
+
}
|
models/subword_markov/sat_markov_ctx3_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c0d2813d72ef060518afce7d288ce44086525ab3c60c5228dcd52b350ac6cabe
|
| 3 |
+
size 4237443
|
models/subword_markov/sat_markov_ctx3_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"context_size": 3,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "sat",
|
| 5 |
+
"unique_contexts": 132005,
|
| 6 |
+
"total_transitions": 27638238
|
| 7 |
+
}
|
models/subword_markov/sat_markov_ctx4_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b4ea96354d10702cda83917512916ed0ba7333ca96dba98f81a3441a4827e34f
|
| 3 |
+
size 13423382
|
models/subword_markov/sat_markov_ctx4_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"context_size": 4,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "sat",
|
| 5 |
+
"unique_contexts": 523754,
|
| 6 |
+
"total_transitions": 27623584
|
| 7 |
+
}
|
models/subword_ngram/sat_2gram_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e6488b3943f0ee090d632d60ac72247d7f3d6bed67583e04a1558e195fd3a4f0
|
| 3 |
+
size 105451
|
models/subword_ngram/sat_2gram_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 2,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "sat",
|
| 5 |
+
"unique_ngrams": 7442,
|
| 6 |
+
"total_ngrams": 27667546
|
| 7 |
+
}
|
models/subword_ngram/sat_3gram_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:343a4c3a69af9a8151b1df2263e335647f72ede49b8c54a35680583930281d69
|
| 3 |
+
size 734455
|
models/subword_ngram/sat_3gram_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 3,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "sat",
|
| 5 |
+
"unique_ngrams": 55355,
|
| 6 |
+
"total_ngrams": 27652892
|
| 7 |
+
}
|
models/subword_ngram/sat_4gram_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:72565d665073aa0d9be61c1295c7f94c8010bc7c47f32d114c7091494f5384a3
|
| 3 |
+
size 3623923
|
models/subword_ngram/sat_4gram_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 4,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "sat",
|
| 5 |
+
"unique_ngrams": 288409,
|
| 6 |
+
"total_ngrams": 27638238
|
| 7 |
+
}
|
models/subword_ngram/sat_5gram_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b2a975608f800b7192d045b46e7104bc84e46191031b1c0870611015d55f0f07
|
| 3 |
+
size 9914156
|
models/subword_ngram/sat_5gram_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 5,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "sat",
|
| 5 |
+
"unique_ngrams": 734127,
|
| 6 |
+
"total_ngrams": 27623584
|
| 7 |
+
}
|
models/tokenizer/sat_tokenizer_16k.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9294b57f4851595afcd78a86b3c3b8cd97c195c78a5d9f63bfcc7bd9ee3ed1e7
|
| 3 |
+
size 606785
|
models/tokenizer/sat_tokenizer_16k.vocab
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/sat_tokenizer_32k.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3bec3bbac6b3192e128bbb189f88165316d7ebc3edbfa6154c455a7ad906b108
|
| 3 |
+
size 991401
|
models/tokenizer/sat_tokenizer_32k.vocab
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/sat_tokenizer_64k.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0ab238d1f78b219c53ab1bbce97686af37009546b521e97abde148d74fa67e15
|
| 3 |
+
size 1829909
|
models/tokenizer/sat_tokenizer_64k.vocab
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/sat_tokenizer_8k.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5f1c856e0d0d1e318a99389ece7b6fdebfb5e46b8d5208c00e2a681752e62072
|
| 3 |
+
size 417795
|
models/tokenizer/sat_tokenizer_8k.vocab
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/vocabulary/sat_vocabulary.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e9c61c65dc77ea338cd4aec048457de6fab3900436a1ad18ef3307f6e076cb82
|
| 3 |
+
size 1883210
|
models/vocabulary/sat_vocabulary_metadata.json
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "sat",
|
| 3 |
+
"vocabulary_size": 104851,
|
| 4 |
+
"variant": "full",
|
| 5 |
+
"statistics": {
|
| 6 |
+
"type_token_ratio": 0.057803130384474044,
|
| 7 |
+
"coverage": {
|
| 8 |
+
"top_100": 0.41236231093111825,
|
| 9 |
+
"top_1000": 0.6859438370713339,
|
| 10 |
+
"top_5000": 0.8158233425805784,
|
| 11 |
+
"top_10000": 0.8587137135327363
|
| 12 |
+
},
|
| 13 |
+
"hapax_count": 170103,
|
| 14 |
+
"hapax_ratio": 0.6186598485564858,
|
| 15 |
+
"total_documents": 14654
|
| 16 |
+
}
|
| 17 |
+
}
|
models/word_markov/sat_markov_ctx1_word.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:270b607222d5d62ff400704e633b1f8947b30ede33970fc17452eed0535f7ac8
|
| 3 |
+
size 18766347
|