Upload all models and assets for om (latest)
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +7 -0
- README.md +773 -0
- models/embeddings/aligned/om_128d.bin +3 -0
- models/embeddings/aligned/om_128d.meta.json +1 -0
- models/embeddings/aligned/om_128d.projection.npy +3 -0
- models/embeddings/aligned/om_128d_metadata.json +8 -0
- models/embeddings/aligned/om_32d.bin +3 -0
- models/embeddings/aligned/om_32d.meta.json +1 -0
- models/embeddings/aligned/om_32d.projection.npy +3 -0
- models/embeddings/aligned/om_32d_metadata.json +8 -0
- models/embeddings/aligned/om_64d.bin +3 -0
- models/embeddings/aligned/om_64d.meta.json +1 -0
- models/embeddings/aligned/om_64d.projection.npy +3 -0
- models/embeddings/aligned/om_64d_metadata.json +8 -0
- models/embeddings/monolingual/om_128d.bin +3 -0
- models/embeddings/monolingual/om_128d.meta.json +1 -0
- models/embeddings/monolingual/om_128d_metadata.json +16 -0
- models/embeddings/monolingual/om_32d.bin +3 -0
- models/embeddings/monolingual/om_32d.meta.json +1 -0
- models/embeddings/monolingual/om_32d_metadata.json +16 -0
- models/embeddings/monolingual/om_64d.bin +3 -0
- models/embeddings/monolingual/om_64d.meta.json +1 -0
- models/embeddings/monolingual/om_64d_metadata.json +16 -0
- models/subword_markov/om_markov_ctx1_subword.parquet +3 -0
- models/subword_markov/om_markov_ctx1_subword_metadata.json +7 -0
- models/subword_markov/om_markov_ctx2_subword.parquet +3 -0
- models/subword_markov/om_markov_ctx2_subword_metadata.json +7 -0
- models/subword_markov/om_markov_ctx3_subword.parquet +3 -0
- models/subword_markov/om_markov_ctx3_subword_metadata.json +7 -0
- models/subword_markov/om_markov_ctx4_subword.parquet +3 -0
- models/subword_markov/om_markov_ctx4_subword_metadata.json +7 -0
- models/subword_ngram/om_2gram_subword.parquet +3 -0
- models/subword_ngram/om_2gram_subword_metadata.json +7 -0
- models/subword_ngram/om_3gram_subword.parquet +3 -0
- models/subword_ngram/om_3gram_subword_metadata.json +7 -0
- models/subword_ngram/om_4gram_subword.parquet +3 -0
- models/subword_ngram/om_4gram_subword_metadata.json +7 -0
- models/subword_ngram/om_5gram_subword.parquet +3 -0
- models/subword_ngram/om_5gram_subword_metadata.json +7 -0
- models/tokenizer/om_tokenizer_16k.model +3 -0
- models/tokenizer/om_tokenizer_16k.vocab +0 -0
- models/tokenizer/om_tokenizer_32k.model +3 -0
- models/tokenizer/om_tokenizer_32k.vocab +0 -0
- models/tokenizer/om_tokenizer_64k.model +3 -0
- models/tokenizer/om_tokenizer_64k.vocab +0 -0
- models/tokenizer/om_tokenizer_8k.model +3 -0
- models/tokenizer/om_tokenizer_8k.vocab +0 -0
- models/vocabulary/om_vocabulary.parquet +3 -0
- models/vocabulary/om_vocabulary_metadata.json +17 -0
- models/word_markov/om_markov_ctx1_word.parquet +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,10 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
visualizations/embedding_similarity.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
visualizations/embedding_tsne_multilingual.png filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
visualizations/performance_dashboard.png filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
visualizations/position_encoding_comparison.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
+
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,773 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: om
|
| 3 |
+
language_name: Oromo
|
| 4 |
+
language_family: cushitic
|
| 5 |
+
tags:
|
| 6 |
+
- wikilangs
|
| 7 |
+
- nlp
|
| 8 |
+
- tokenizer
|
| 9 |
+
- embeddings
|
| 10 |
+
- n-gram
|
| 11 |
+
- markov
|
| 12 |
+
- wikipedia
|
| 13 |
+
- feature-extraction
|
| 14 |
+
- sentence-similarity
|
| 15 |
+
- tokenization
|
| 16 |
+
- n-grams
|
| 17 |
+
- markov-chain
|
| 18 |
+
- text-mining
|
| 19 |
+
- fasttext
|
| 20 |
+
- babelvec
|
| 21 |
+
- vocabulous
|
| 22 |
+
- vocabulary
|
| 23 |
+
- monolingual
|
| 24 |
+
- family-cushitic
|
| 25 |
+
license: mit
|
| 26 |
+
library_name: wikilangs
|
| 27 |
+
pipeline_tag: text-generation
|
| 28 |
+
datasets:
|
| 29 |
+
- omarkamali/wikipedia-monthly
|
| 30 |
+
dataset_info:
|
| 31 |
+
name: wikipedia-monthly
|
| 32 |
+
description: Monthly snapshots of Wikipedia articles across 300+ languages
|
| 33 |
+
metrics:
|
| 34 |
+
- name: best_compression_ratio
|
| 35 |
+
type: compression
|
| 36 |
+
value: 4.912
|
| 37 |
+
- name: best_isotropy
|
| 38 |
+
type: isotropy
|
| 39 |
+
value: 0.8881
|
| 40 |
+
- name: vocabulary_size
|
| 41 |
+
type: vocab
|
| 42 |
+
value: 0
|
| 43 |
+
generated: 2026-01-10
|
| 44 |
+
---
|
| 45 |
+
|
| 46 |
+
# Oromo - Wikilangs Models
|
| 47 |
+
## Comprehensive Research Report & Full Ablation Study
|
| 48 |
+
|
| 49 |
+
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Oromo** Wikipedia data.
|
| 50 |
+
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
|
| 51 |
+
|
| 52 |
+
## 📋 Repository Contents
|
| 53 |
+
|
| 54 |
+
### Models & Assets
|
| 55 |
+
|
| 56 |
+
- Tokenizers (8k, 16k, 32k, 64k)
|
| 57 |
+
- N-gram models (2, 3, 4, 5-gram)
|
| 58 |
+
- Markov chains (context of 1, 2, 3, 4 and 5)
|
| 59 |
+
- Subword N-gram and Markov chains
|
| 60 |
+
- Embeddings in various sizes and dimensions (aligned and unaligned)
|
| 61 |
+
- Language Vocabulary
|
| 62 |
+
- Language Statistics
|
| 63 |
+
|
| 64 |
+

|
| 65 |
+
|
| 66 |
+
### Analysis and Evaluation
|
| 67 |
+
|
| 68 |
+
- [1. Tokenizer Evaluation](#1-tokenizer-evaluation)
|
| 69 |
+
- [2. N-gram Model Evaluation](#2-n-gram-model-evaluation)
|
| 70 |
+
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 71 |
+
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 72 |
+
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 73 |
+
- [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental)
|
| 74 |
+
- [7. Summary & Recommendations](#7-summary--recommendations)
|
| 75 |
+
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 76 |
+
- [Visualizations Index](#visualizations-index)
|
| 77 |
+
|
| 78 |
+
---
|
| 79 |
+
## 1. Tokenizer Evaluation
|
| 80 |
+
|
| 81 |
+

|
| 82 |
+
|
| 83 |
+

|
| 84 |
+
|
| 85 |
+

|
| 86 |
+
|
| 87 |
+

|
| 88 |
+
|
| 89 |
+
### Results
|
| 90 |
+
|
| 91 |
+
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 92 |
+
|------------|-------------|---------------|----------|--------------|
|
| 93 |
+
| **8k** | 3.925x | 3.93 | 0.7743% | 539,824 |
|
| 94 |
+
| **16k** | 4.303x | 4.30 | 0.8489% | 492,401 |
|
| 95 |
+
| **32k** | 4.614x | 4.62 | 0.9103% | 459,184 |
|
| 96 |
+
| **64k** | 4.912x 🏆 | 4.91 | 0.9692% | 431,282 |
|
| 97 |
+
|
| 98 |
+
### Tokenization Examples
|
| 99 |
+
|
| 100 |
+
Below are sample sentences tokenized with each vocabulary size:
|
| 101 |
+
|
| 102 |
+
**Sample 1:** `Giinii-Bisaa’uu biyya Afrikaa keessa jirtu. President: Umaró Umbaló Sissoko Prim...`
|
| 103 |
+
|
| 104 |
+
| Vocab | Tokens | Count |
|
| 105 |
+
|-------|--------|-------|
|
| 106 |
+
| 8k | `▁giinii - b isaa ’ uu ▁biyya ▁afrikaa ▁keessa ▁jirtu ... (+26 more)` | 36 |
|
| 107 |
+
| 16k | `▁giinii - b isaa ’ uu ▁biyya ▁afrikaa ▁keessa ▁jirtu ... (+21 more)` | 31 |
|
| 108 |
+
| 32k | `▁giinii - b isaa ’ uu ▁biyya ▁afrikaa ▁keessa ▁jirtu ... (+19 more)` | 29 |
|
| 109 |
+
| 64k | `▁giinii - bisaa ’ uu ▁biyya ▁afrikaa ▁keessa ▁jirtu . ... (+11 more)` | 21 |
|
| 110 |
+
|
| 111 |
+
**Sample 2:** `Godinni Qeellam Wallagaa kan argamu Oromiyaa keessatti. Wabii Oromiyaa Qellami w...`
|
| 112 |
+
|
| 113 |
+
| Vocab | Tokens | Count |
|
| 114 |
+
|-------|--------|-------|
|
| 115 |
+
| 8k | `▁godinni ▁q eell am ▁wall agaa ▁kan ▁argamu ▁oromiyaa ▁keessatti ... (+15 more)` | 25 |
|
| 116 |
+
| 16k | `▁godinni ▁qeell am ▁wall agaa ▁kan ▁argamu ▁oromiyaa ▁keessatti . ... (+13 more)` | 23 |
|
| 117 |
+
| 32k | `▁godinni ▁qeellam ▁wallagaa ▁kan ▁argamu ▁oromiyaa ▁keessatti . ▁wabii ▁oromiyaa ... (+8 more)` | 18 |
|
| 118 |
+
| 64k | `▁godinni ▁qeellam ▁wallagaa ▁kan ▁argamu ▁oromiyaa ▁keessatti . ▁wabii ▁oromiyaa ... (+6 more)` | 16 |
|
| 119 |
+
|
| 120 |
+
**Sample 3:** `Indoneeshiyaan biyya Eshiyaa bahaatti argamtu. Indoneeshiyaan odolotaarraa kan u...`
|
| 121 |
+
|
| 122 |
+
| Vocab | Tokens | Count |
|
| 123 |
+
|-------|--------|-------|
|
| 124 |
+
| 8k | `▁ind on eesh iyaan ▁biyya ▁eshiyaa ▁bahaatti ▁argamtu . ▁ind ... (+25 more)` | 35 |
|
| 125 |
+
| 16k | `▁indon eesh iyaan ▁biyya ▁eshiyaa ▁bahaatti ▁argamtu . ▁indon eesh ... (+22 more)` | 32 |
|
| 126 |
+
| 32k | `▁indoneeshiyaan ▁biyya ▁eshiyaa ▁bahaatti ▁argamtu . ▁indoneeshiyaan ▁odol ot aarraa ... (+18 more)` | 28 |
|
| 127 |
+
| 64k | `▁indoneeshiyaan ▁biyya ▁eshiyaa ▁bahaatti ▁argamtu . ▁indoneeshiyaan ▁odolotaarraa ▁kan ▁uummamte ... (+16 more)` | 26 |
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
### Key Findings
|
| 131 |
+
|
| 132 |
+
- **Best Compression:** 64k achieves 4.912x compression
|
| 133 |
+
- **Lowest UNK Rate:** 8k with 0.7743% unknown tokens
|
| 134 |
+
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 135 |
+
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 136 |
+
|
| 137 |
+
---
|
| 138 |
+
## 2. N-gram Model Evaluation
|
| 139 |
+
|
| 140 |
+

|
| 141 |
+
|
| 142 |
+

|
| 143 |
+
|
| 144 |
+

|
| 145 |
+
|
| 146 |
+
### Results
|
| 147 |
+
|
| 148 |
+
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 149 |
+
|--------|---------|------------|---------|----------------|------------------|-------------------|
|
| 150 |
+
| **2-gram** | Word | 5,143 | 12.33 | 11,123 | 19.4% | 44.4% |
|
| 151 |
+
| **2-gram** | Subword | 213 🏆 | 7.73 | 2,915 | 73.1% | 99.4% |
|
| 152 |
+
| **3-gram** | Word | 6,773 | 12.73 | 11,742 | 15.4% | 34.2% |
|
| 153 |
+
| **3-gram** | Subword | 1,522 | 10.57 | 17,267 | 31.9% | 80.6% |
|
| 154 |
+
| **4-gram** | Word | 27,247 | 14.73 | 32,157 | 4.6% | 12.9% |
|
| 155 |
+
| **4-gram** | Subword | 7,489 | 12.87 | 73,751 | 15.1% | 48.6% |
|
| 156 |
+
| **5-gram** | Word | 24,982 | 14.61 | 27,382 | 3.0% | 11.0% |
|
| 157 |
+
| **5-gram** | Subword | 24,392 | 14.57 | 164,495 | 9.3% | 29.9% |
|
| 158 |
+
|
| 159 |
+
### Top 5 N-grams by Size
|
| 160 |
+
|
| 161 |
+
**2-grams (Word):**
|
| 162 |
+
|
| 163 |
+
| Rank | N-gram | Count |
|
| 164 |
+
|------|--------|-------|
|
| 165 |
+
| 1 | `ta u` | 3,055 |
|
| 166 |
+
| 2 | `yoo ta` | 2,546 |
|
| 167 |
+
| 3 | `ta e` | 1,182 |
|
| 168 |
+
| 4 | `danda a` | 874 |
|
| 169 |
+
| 5 | `kan akka` | 737 |
|
| 170 |
+
|
| 171 |
+
**3-grams (Word):**
|
| 172 |
+
|
| 173 |
+
| Rank | N-gram | Count |
|
| 174 |
+
|------|--------|-------|
|
| 175 |
+
| 1 | `yoo ta u` | 2,255 |
|
| 176 |
+
| 2 | `haa ta u` | 342 |
|
| 177 |
+
| 3 | `ta u malee` | 285 |
|
| 178 |
+
| 4 | `yeroo baay ee` | 252 |
|
| 179 |
+
| 5 | `of keessaa qaba` | 224 |
|
| 180 |
+
|
| 181 |
+
**4-grams (Word):**
|
| 182 |
+
|
| 183 |
+
| Rank | N-gram | Count |
|
| 184 |
+
|------|--------|-------|
|
| 185 |
+
| 1 | `haa ta u malee` | 282 |
|
| 186 |
+
| 2 | `yoo ta u kunis` | 213 |
|
| 187 |
+
| 3 | `qabu yoo ta u` | 167 |
|
| 188 |
+
| 4 | `ta uu danda a` | 135 |
|
| 189 |
+
| 5 | `tokko yoo ta u` | 128 |
|
| 190 |
+
|
| 191 |
+
**5-grams (Word):**
|
| 192 |
+
|
| 193 |
+
| Rank | N-gram | Count |
|
| 194 |
+
|------|--------|-------|
|
| 195 |
+
| 1 | `kan qabu yoo ta u` | 103 |
|
| 196 |
+
| 2 | `keessaa tokko yoo ta u` | 91 |
|
| 197 |
+
| 3 | `kan qaban yoo ta u` | 61 |
|
| 198 |
+
| 4 | `of keessaa qabu yoo ta` | 41 |
|
| 199 |
+
| 5 | `keessaa qabu yoo ta u` | 41 |
|
| 200 |
+
|
| 201 |
+
**2-grams (Subword):**
|
| 202 |
+
|
| 203 |
+
| Rank | N-gram | Count |
|
| 204 |
+
|------|--------|-------|
|
| 205 |
+
| 1 | `a a` | 191,675 |
|
| 206 |
+
| 2 | `a _` | 157,464 |
|
| 207 |
+
| 3 | `a n` | 95,295 |
|
| 208 |
+
| 4 | `i _` | 91,344 |
|
| 209 |
+
| 5 | `n _` | 80,089 |
|
| 210 |
+
|
| 211 |
+
**3-grams (Subword):**
|
| 212 |
+
|
| 213 |
+
| Rank | N-gram | Count |
|
| 214 |
+
|------|--------|-------|
|
| 215 |
+
| 1 | `a a _` | 71,357 |
|
| 216 |
+
| 2 | `a n _` | 40,890 |
|
| 217 |
+
| 3 | `a a n` | 34,146 |
|
| 218 |
+
| 4 | `i i _` | 34,015 |
|
| 219 |
+
| 5 | `t t i` | 25,977 |
|
| 220 |
+
|
| 221 |
+
**4-grams (Subword):**
|
| 222 |
+
|
| 223 |
+
| Rank | N-gram | Count |
|
| 224 |
+
|------|--------|-------|
|
| 225 |
+
| 1 | `t t i _` | 21,400 |
|
| 226 |
+
| 2 | `a a n _` | 17,797 |
|
| 227 |
+
| 3 | `_ k a n` | 16,358 |
|
| 228 |
+
| 4 | `e e s s` | 15,993 |
|
| 229 |
+
| 5 | `a t t i` | 15,383 |
|
| 230 |
+
|
| 231 |
+
**5-grams (Subword):**
|
| 232 |
+
|
| 233 |
+
| Rank | N-gram | Count |
|
| 234 |
+
|------|--------|-------|
|
| 235 |
+
| 1 | `a t t i _` | 13,078 |
|
| 236 |
+
| 2 | `e e s s a` | 12,757 |
|
| 237 |
+
| 3 | `_ k a n _` | 11,199 |
|
| 238 |
+
| 4 | `k e e s s` | 10,958 |
|
| 239 |
+
| 5 | `_ k e e s` | 10,805 |
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
### Key Findings
|
| 243 |
+
|
| 244 |
+
- **Best Perplexity:** 2-gram (subword) with 213
|
| 245 |
+
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 246 |
+
- **Coverage:** Top-1000 patterns cover ~30% of corpus
|
| 247 |
+
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 248 |
+
|
| 249 |
+
---
|
| 250 |
+
## 3. Markov Chain Evaluation
|
| 251 |
+
|
| 252 |
+

|
| 253 |
+
|
| 254 |
+

|
| 255 |
+
|
| 256 |
+

|
| 257 |
+
|
| 258 |
+
### Results
|
| 259 |
+
|
| 260 |
+
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 261 |
+
|---------|---------|-------------|------------|------------------|-----------------|----------------|
|
| 262 |
+
| **1** | Word | 0.7695 | 1.705 | 4.74 | 79,366 | 23.1% |
|
| 263 |
+
| **1** | Subword | 1.4423 | 2.718 | 10.26 | 768 | 0.0% |
|
| 264 |
+
| **2** | Word | 0.1820 | 1.134 | 1.36 | 375,403 | 81.8% |
|
| 265 |
+
| **2** | Subword | 0.8632 | 1.819 | 4.70 | 7,870 | 13.7% |
|
| 266 |
+
| **3** | Word | 0.0437 | 1.031 | 1.07 | 508,948 | 95.6% |
|
| 267 |
+
| **3** | Subword | 0.7482 | 1.680 | 3.52 | 36,941 | 25.2% |
|
| 268 |
+
| **4** | Word | 0.0138 🏆 | 1.010 | 1.02 | 541,591 | 98.6% |
|
| 269 |
+
| **4** | Subword | 0.5894 | 1.505 | 2.53 | 129,933 | 41.1% |
|
| 270 |
+
|
| 271 |
+
### Generated Text Samples (Word-based)
|
| 272 |
+
|
| 273 |
+
Below are text samples generated from each word-based Markov chain model:
|
| 274 |
+
|
| 275 |
+
**Context Size 1:**
|
| 276 |
+
|
| 277 |
+
1. `fi niwutiroonii kan maatilee gurguddaa macroscopic anatomy fi wantoota qoyyobiyyoo hojjatu ta ee war...`
|
| 278 |
+
2. `kan maddu hedduu kan akka barachuu irra taxon dha innis dheerina ujummoo dhigaa ademma kunis yaada`
|
| 279 |
+
3. `ta uun leenjisaa yoo ta u guuttiiqoota poozatiiviidhaan chaarjii saffisaan hir isa sirrii irratti ka...`
|
| 280 |
+
|
| 281 |
+
**Context Size 2:**
|
| 282 |
+
|
| 283 |
+
1. `ta u malee siwaahiliin ummatta hanga million 40 guddatte haa ta u kan oromiyaa dabalatee heera mataa`
|
| 284 |
+
2. `yoo ta u xurbaa alfaa lamaa fi isaa ol walitti makamuun narvii lafee dugda of keessaa qabu`
|
| 285 |
+
3. `ta e garuu kofni isaa sirrii ta een fide namoonni jireenya godaansaa dhiisanii ganda dhaabbataa uumm...`
|
| 286 |
+
|
| 287 |
+
**Context Size 3:**
|
| 288 |
+
|
| 289 |
+
1. `yoo ta u hiikni isaanii kofa sirrii jechuudha rektaangiliin rogoonni isaa afran dheerinni isaa walfa...`
|
| 290 |
+
2. `haa ta u malee rakkoon haaraan dhufe cunqursaa lakkoofsaa tyranny of numbers naannee walxaxaa ijaaru...`
|
| 291 |
+
3. `ta u malee walii galtee dhabuun isaa fi birgaadeer jeneraal abdulkaariim qaasim gidduutti uumameen m...`
|
| 292 |
+
|
| 293 |
+
**Context Size 4:**
|
| 294 |
+
|
| 295 |
+
1. `haa ta u malee addeessi lafa irraa fagoo jira fageenyi inni lafarraa qabus kilomeetira 384 000 ol ta...`
|
| 296 |
+
2. `yoo ta u kunis dhuudhaa haaraa dhaabbatummaa saffisa ifaa fi dhuudhaa duraan beekamaa ture dhuudhaa ...`
|
| 297 |
+
3. `qabu yoo ta u yeroo baay ee meeshaalee bulchiinsaatiin kan qindaa anidha jijjiiramni adeemsa kana ke...`
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
### Generated Text Samples (Subword-based)
|
| 301 |
+
|
| 302 |
+
Below are text samples generated from each subword-based Markov chain model:
|
| 303 |
+
|
| 304 |
+
**Context Size 1:**
|
| 305 |
+
|
| 306 |
+
1. `a_awalmbarseeers`
|
| 307 |
+
2. `_ga_isufin_saan_`
|
| 308 |
+
3. `idalee_haaaammi_`
|
| 309 |
+
|
| 310 |
+
**Context Size 2:**
|
| 311 |
+
|
| 312 |
+
1. `aan._dhaniilixa_n`
|
| 313 |
+
2. `a_gamu_dhummaaloo`
|
| 314 |
+
3. `anii_dhaa_laawudh`
|
| 315 |
+
|
| 316 |
+
**Context Size 3:**
|
| 317 |
+
|
| 318 |
+
1. `aa_biran._see_itti`
|
| 319 |
+
2. `an_dina_maloojiiti`
|
| 320 |
+
3. `aane_galuuf_fakkee`
|
| 321 |
+
|
| 322 |
+
**Context Size 4:**
|
| 323 |
+
|
| 324 |
+
1. `tti_buuf_itti_oomis`
|
| 325 |
+
2. `aan_fakkasummataa_q`
|
| 326 |
+
3. `_kan_ariiroo_mancaa`
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
### Key Findings
|
| 330 |
+
|
| 331 |
+
- **Best Predictability:** Context-4 (word) with 98.6% predictability
|
| 332 |
+
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 333 |
+
- **Memory Trade-off:** Larger contexts require more storage (129,933 contexts)
|
| 334 |
+
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 335 |
+
|
| 336 |
+
---
|
| 337 |
+
## 4. Vocabulary Analysis
|
| 338 |
+
|
| 339 |
+

|
| 340 |
+
|
| 341 |
+

|
| 342 |
+
|
| 343 |
+

|
| 344 |
+
|
| 345 |
+
### Statistics
|
| 346 |
+
|
| 347 |
+
| Metric | Value |
|
| 348 |
+
|--------|-------|
|
| 349 |
+
| Vocabulary Size | 33,399 |
|
| 350 |
+
| Total Tokens | 552,518 |
|
| 351 |
+
| Mean Frequency | 16.54 |
|
| 352 |
+
| Median Frequency | 3 |
|
| 353 |
+
| Frequency Std Dev | 147.85 |
|
| 354 |
+
|
| 355 |
+
### Most Common Words
|
| 356 |
+
|
| 357 |
+
| Rank | Word | Frequency |
|
| 358 |
+
|------|------|-----------|
|
| 359 |
+
| 1 | fi | 12,823 |
|
| 360 |
+
| 2 | kan | 11,436 |
|
| 361 |
+
| 3 | ta | 8,265 |
|
| 362 |
+
| 4 | akka | 6,344 |
|
| 363 |
+
| 5 | keessatti | 5,232 |
|
| 364 |
+
| 6 | u | 4,498 |
|
| 365 |
+
| 7 | yoo | 4,135 |
|
| 366 |
+
| 8 | hin | 3,898 |
|
| 367 |
+
| 9 | yeroo | 3,580 |
|
| 368 |
+
| 10 | tokko | 3,377 |
|
| 369 |
+
|
| 370 |
+
### Least Common Words (from vocabulary)
|
| 371 |
+
|
| 372 |
+
| Rank | Word | Frequency |
|
| 373 |
+
|------|------|-----------|
|
| 374 |
+
| 1 | prezidaantii | 2 |
|
| 375 |
+
| 2 | kasasiyoonaa | 2 |
|
| 376 |
+
| 3 | feltrinelli | 2 |
|
| 377 |
+
| 4 | rizaabii | 2 |
|
| 378 |
+
| 5 | raamyaan | 2 |
|
| 379 |
+
| 6 | rootarii | 2 |
|
| 380 |
+
| 7 | eegsa | 2 |
|
| 381 |
+
| 8 | alta | 2 |
|
| 382 |
+
| 9 | kuusii | 2 |
|
| 383 |
+
| 10 | maalamaa | 2 |
|
| 384 |
+
|
| 385 |
+
### Zipf's Law Analysis
|
| 386 |
+
|
| 387 |
+
| Metric | Value |
|
| 388 |
+
|--------|-------|
|
| 389 |
+
| Zipf Coefficient | 1.0202 |
|
| 390 |
+
| R² (Goodness of Fit) | 0.995340 |
|
| 391 |
+
| Adherence Quality | **excellent** |
|
| 392 |
+
|
| 393 |
+
### Coverage Analysis
|
| 394 |
+
|
| 395 |
+
| Top N Words | Coverage |
|
| 396 |
+
|-------------|----------|
|
| 397 |
+
| Top 100 | 32.2% |
|
| 398 |
+
| Top 1,000 | 59.7% |
|
| 399 |
+
| Top 5,000 | 79.9% |
|
| 400 |
+
| Top 10,000 | 87.7% |
|
| 401 |
+
|
| 402 |
+
### Key Findings
|
| 403 |
+
|
| 404 |
+
- **Zipf Compliance:** R²=0.9953 indicates excellent adherence to Zipf's law
|
| 405 |
+
- **High Frequency Dominance:** Top 100 words cover 32.2% of corpus
|
| 406 |
+
- **Long Tail:** 23,399 words needed for remaining 12.3% coverage
|
| 407 |
+
|
| 408 |
+
---
|
| 409 |
+
## 5. Word Embeddings Evaluation
|
| 410 |
+
|
| 411 |
+

|
| 412 |
+
|
| 413 |
+

|
| 414 |
+
|
| 415 |
+

|
| 416 |
+
|
| 417 |
+

|
| 418 |
+
|
| 419 |
+
|
| 420 |
+
### 5.1 Cross-Lingual Alignment
|
| 421 |
+
|
| 422 |
+

|
| 423 |
+
|
| 424 |
+

|
| 425 |
+
|
| 426 |
+
|
| 427 |
+
### 5.2 Model Comparison
|
| 428 |
+
|
| 429 |
+
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|
| 430 |
+
|-------|-----------|----------|------------------|---------------|----------------|
|
| 431 |
+
| **mono_32d** | 32 | 0.8881 🏆 | 0.3121 | N/A | N/A |
|
| 432 |
+
| **mono_64d** | 64 | 0.7740 | 0.2857 | N/A | N/A |
|
| 433 |
+
| **mono_128d** | 128 | 0.1998 | 0.2448 | N/A | N/A |
|
| 434 |
+
| **aligned_32d** | 32 | 0.8881 | 0.3137 | 0.0140 | 0.1340 |
|
| 435 |
+
| **aligned_64d** | 64 | 0.7740 | 0.2922 | 0.0300 | 0.1800 |
|
| 436 |
+
| **aligned_128d** | 128 | 0.1998 | 0.2360 | 0.0660 | 0.2500 |
|
| 437 |
+
|
| 438 |
+
### Key Findings
|
| 439 |
+
|
| 440 |
+
- **Best Isotropy:** mono_32d with 0.8881 (more uniform distribution)
|
| 441 |
+
- **Semantic Density:** Average pairwise similarity of 0.2807. Lower values indicate better semantic separation.
|
| 442 |
+
- **Alignment Quality:** Aligned models achieve up to 6.6% R@1 in cross-lingual retrieval.
|
| 443 |
+
- **Recommendation:** 128d aligned for best cross-lingual performance
|
| 444 |
+
|
| 445 |
+
---
|
| 446 |
+
## 6. Morphological Analysis (Experimental)
|
| 447 |
+
|
| 448 |
+
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
|
| 449 |
+
|
| 450 |
+
### 6.1 Productivity & Complexity
|
| 451 |
+
|
| 452 |
+
| Metric | Value | Interpretation | Recommendation |
|
| 453 |
+
|--------|-------|----------------|----------------|
|
| 454 |
+
| Productivity Index | **5.000** | High morphological productivity | Reliable analysis |
|
| 455 |
+
| Idiomaticity Gap | **-0.633** | Low formulaic content | - |
|
| 456 |
+
|
| 457 |
+
### 6.2 Affix Inventory (Productive Units)
|
| 458 |
+
|
| 459 |
+
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
|
| 460 |
+
|
| 461 |
+
#### Productive Prefixes
|
| 462 |
+
| Prefix | Examples |
|
| 463 |
+
|--------|----------|
|
| 464 |
+
| `-a` | alex, amaaradhaan, ambaa |
|
| 465 |
+
| `-s` | silocones, soovieyeet, sexual |
|
| 466 |
+
| `-b` | beekamaafi, baatriin, balaaleffata |
|
| 467 |
+
| `-d` | duruma, document, dheedee |
|
| 468 |
+
| `-m` | milaa, moment, materials |
|
| 469 |
+
| `-ma` | materials, massachusetts, malcolm |
|
| 470 |
+
| `-ba` | baatriin, balaaleffata, baasti |
|
| 471 |
+
| `-g` | garraan, guutuu, guute |
|
| 472 |
+
|
| 473 |
+
#### Productive Suffixes
|
| 474 |
+
| Suffix | Examples |
|
| 475 |
+
|--------|----------|
|
| 476 |
+
| `-a` | milaa, qilleensarra, duruma |
|
| 477 |
+
| `-i` | beekamaafi, keetoonoonni, miiti |
|
| 478 |
+
| `-n` | tekinooloojiin, garraan, cimaadhaan |
|
| 479 |
+
| `-ii` | naqanii, giriikii, bismazii |
|
| 480 |
+
| `-aa` | milaa, wiifaa, inaariyaa |
|
| 481 |
+
| `-an` | garraan, cimaadhaan, firoottan |
|
| 482 |
+
| `-e` | caamee, kaaye, dheedee |
|
| 483 |
+
| `-ti` | miiti, baasti, totti |
|
| 484 |
+
|
| 485 |
+
### 6.3 Bound Stems (Lexical Roots)
|
| 486 |
+
|
| 487 |
+
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
|
| 488 |
+
|
| 489 |
+
| Stem | Cohesion | Substitutability | Examples |
|
| 490 |
+
|------|----------|------------------|----------|
|
| 491 |
+
| `araa` | 1.85x | 101 contexts | haraa, karaa, qaraa |
|
| 492 |
+
| `rraa` | 1.90x | 85 contexts | erraa, urraa, orraa |
|
| 493 |
+
| `mmaa` | 2.12x | 47 contexts | ummaa, ammaa, lummaa |
|
| 494 |
+
| `eess` | 1.68x | 124 contexts | eessa, keessa, eessoo |
|
| 495 |
+
| `gudd` | 2.12x | 34 contexts | guddo, gudda, guddae |
|
| 496 |
+
| `aala` | 1.58x | 114 contexts | yaala, jaala, gaala |
|
| 497 |
+
| `arga` | 1.75x | 66 contexts | marga, argan, argaa |
|
| 498 |
+
| `rrat` | 2.24x | 25 contexts | irrati, urratti, arratti |
|
| 499 |
+
| `okko` | 2.26x | 24 contexts | tokko, tokkof, tokkos |
|
| 500 |
+
| `ratt` | 1.90x | 45 contexts | iratti, barattu, biratti |
|
| 501 |
+
| `chuu` | 1.77x | 50 contexts | achuu, kichuu, glchuu |
|
| 502 |
+
| `jedh` | 2.23x | 20 contexts | jedhu, jedhe, jedha |
|
| 503 |
+
|
| 504 |
+
### 6.4 Affix Compatibility (Co-occurrence)
|
| 505 |
+
|
| 506 |
+
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
|
| 507 |
+
|
| 508 |
+
| Prefix | Suffix | Frequency | Examples |
|
| 509 |
+
|--------|--------|-----------|----------|
|
| 510 |
+
| `-b` | `-a` | 163 words | balbala, biyyootaa |
|
| 511 |
+
| `-h` | `-a` | 142 words | hubachaa, harkisuudha |
|
| 512 |
+
| `-a` | `-a` | 141 words | arba, araboota |
|
| 513 |
+
| `-d` | `-a` | 137 words | dhooqa, dandeessa |
|
| 514 |
+
| `-a` | `-i` | 132 words | ashaabi, argamni |
|
| 515 |
+
| `-d` | `-i` | 129 words | dargageessi, dirreetti |
|
| 516 |
+
| `-m` | `-a` | 128 words | milliyoona, molekuloota |
|
| 517 |
+
| `-s` | `-a` | 121 words | shaffaaxa, shayxaana |
|
| 518 |
+
| `-d` | `-n` | 115 words | daawwannaan, dirreewwan |
|
| 519 |
+
| `-g` | `-a` | 110 words | genera, gamaa |
|
| 520 |
+
|
| 521 |
+
### 6.5 Recursive Morpheme Segmentation
|
| 522 |
+
|
| 523 |
+
Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`).
|
| 524 |
+
|
| 525 |
+
| Word | Suggested Split | Confidence | Stem |
|
| 526 |
+
|------|-----------------|------------|------|
|
| 527 |
+
| burtukaanaa | **`burtuka-an-aa`** | 7.5 | `an` |
|
| 528 |
+
| funfannaa | **`funfan-n-aa`** | 7.5 | `n` |
|
| 529 |
+
| dhalattoonni | **`dhalattoon-n-i`** | 7.5 | `n` |
|
| 530 |
+
| aannannoo | **`aannan-n-oo`** | 7.5 | `n` |
|
| 531 |
+
| tambiixni | **`tambiix-n-i`** | 7.5 | `n` |
|
| 532 |
+
| fooyyessanii | **`fooyyess-an-ii`** | 7.5 | `an` |
|
| 533 |
+
| yaadoonni | **`yaadoon-n-i`** | 7.5 | `n` |
|
| 534 |
+
| academies | **`academ-i-es`** | 7.5 | `i` |
|
| 535 |
+
| karibiyaanii | **`karibiya-an-ii`** | 7.5 | `an` |
|
| 536 |
+
| enciclopèdia | **`enciclopèd-i-a`** | 7.5 | `i` |
|
| 537 |
+
| laakkawanii | **`laakkaw-an-ii`** | 7.5 | `an` |
|
| 538 |
+
| jijjiramni | **`jijjiram-n-i`** | 7.5 | `n` |
|
| 539 |
+
| raajeffannoo | **`raajeffan-n-oo`** | 7.5 | `n` |
|
| 540 |
+
| unionoromia | **`unionorom-i-a`** | 7.5 | `i` |
|
| 541 |
+
| raadiyoona | **`raadiyoo-n-a`** | 7.5 | `n` |
|
| 542 |
+
|
| 543 |
+
### 6.6 Linguistic Interpretation
|
| 544 |
+
|
| 545 |
+
> **Automated Insight:**
|
| 546 |
+
The language Oromo shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
|
| 547 |
+
|
| 548 |
+
---
|
| 549 |
+
## 7. Summary & Recommendations
|
| 550 |
+
|
| 551 |
+

|
| 552 |
+
|
| 553 |
+
### Production Recommendations
|
| 554 |
+
|
| 555 |
+
| Component | Recommended | Rationale |
|
| 556 |
+
|-----------|-------------|-----------|
|
| 557 |
+
| Tokenizer | **64k BPE** | Best compression (4.91x) |
|
| 558 |
+
| N-gram | **2-gram** | Lowest perplexity (213) |
|
| 559 |
+
| Markov | **Context-4** | Highest predictability (98.6%) |
|
| 560 |
+
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 561 |
+
|
| 562 |
+
|
| 563 |
+
---
|
| 564 |
+
## Appendix: Metrics Glossary & Interpretation Guide
|
| 565 |
+
|
| 566 |
+
This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.
|
| 567 |
+
|
| 568 |
+
### Tokenizer Metrics
|
| 569 |
+
|
| 570 |
+
**Compression Ratio**
|
| 571 |
+
> *Definition:* The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.
|
| 572 |
+
>
|
| 573 |
+
> *Intuition:* Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.
|
| 574 |
+
>
|
| 575 |
+
> *What to seek:* Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.
|
| 576 |
+
|
| 577 |
+
**Average Token Length (Fertility)**
|
| 578 |
+
> *Definition:* Mean number of characters per token produced by the tokenizer.
|
| 579 |
+
>
|
| 580 |
+
> *Intuition:* Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.
|
| 581 |
+
>
|
| 582 |
+
> *What to seek:* Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.
|
| 583 |
+
|
| 584 |
+
**Unknown Token Rate (OOV Rate)**
|
| 585 |
+
> *Definition:* Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.
|
| 586 |
+
>
|
| 587 |
+
> *Intuition:* Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.
|
| 588 |
+
>
|
| 589 |
+
> *What to seek:* Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.
|
| 590 |
+
|
| 591 |
+
### N-gram Model Metrics
|
| 592 |
+
|
| 593 |
+
**Perplexity**
|
| 594 |
+
> *Definition:* Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.
|
| 595 |
+
>
|
| 596 |
+
> *Intuition:* If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.
|
| 597 |
+
>
|
| 598 |
+
> *What to seek:* Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.
|
| 599 |
+
|
| 600 |
+
**Entropy**
|
| 601 |
+
> *Definition:* Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.
|
| 602 |
+
>
|
| 603 |
+
> *Intuition:* High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.
|
| 604 |
+
>
|
| 605 |
+
> *What to seek:* Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.
|
| 606 |
+
|
| 607 |
+
**Coverage (Top-K)**
|
| 608 |
+
> *Definition:* Percentage of corpus occurrences explained by the top K most frequent n-grams.
|
| 609 |
+
>
|
| 610 |
+
> *Intuition:* High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.
|
| 611 |
+
>
|
| 612 |
+
> *What to seek:* Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.
|
| 613 |
+
|
| 614 |
+
### Markov Chain Metrics
|
| 615 |
+
|
| 616 |
+
**Average Entropy**
|
| 617 |
+
> *Definition:* Mean entropy across all contexts, measuring average uncertainty in next-word prediction.
|
| 618 |
+
>
|
| 619 |
+
> *Intuition:* Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).
|
| 620 |
+
>
|
| 621 |
+
> *What to seek:* Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.
|
| 622 |
+
|
| 623 |
+
**Branching Factor**
|
| 624 |
+
> *Definition:* Average number of unique next tokens observed for each context.
|
| 625 |
+
>
|
| 626 |
+
> *Intuition:* High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).
|
| 627 |
+
>
|
| 628 |
+
> *What to seek:* Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.
|
| 629 |
+
|
| 630 |
+
**Predictability**
|
| 631 |
+
> *Definition:* Derived metric: (1 - normalized_entropy) × 100%. Indicates how deterministic the model's predictions are.
|
| 632 |
+
>
|
| 633 |
+
> *Intuition:* 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.
|
| 634 |
+
>
|
| 635 |
+
> *What to seek:* Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.
|
| 636 |
+
|
| 637 |
+
### Vocabulary & Zipf's Law Metrics
|
| 638 |
+
|
| 639 |
+
**Zipf's Coefficient**
|
| 640 |
+
> *Definition:* The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.
|
| 641 |
+
>
|
| 642 |
+
> *Intuition:* A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.
|
| 643 |
+
>
|
| 644 |
+
> *What to seek:* Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.
|
| 645 |
+
|
| 646 |
+
**R² (Coefficient of Determination)**
|
| 647 |
+
> *Definition:* Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.
|
| 648 |
+
>
|
| 649 |
+
> *Intuition:* R² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.
|
| 650 |
+
>
|
| 651 |
+
> *What to seek:* R² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.
|
| 652 |
+
|
| 653 |
+
**Vocabulary Coverage**
|
| 654 |
+
> *Definition:* Cumulative percentage of corpus tokens accounted for by the top N words.
|
| 655 |
+
>
|
| 656 |
+
> *Intuition:* Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.
|
| 657 |
+
>
|
| 658 |
+
> *What to seek:* Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.
|
| 659 |
+
|
| 660 |
+
### Word Embedding Metrics
|
| 661 |
+
|
| 662 |
+
**Isotropy**
|
| 663 |
+
> *Definition:* Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.
|
| 664 |
+
>
|
| 665 |
+
> *Intuition:* High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.
|
| 666 |
+
>
|
| 667 |
+
> *What to seek:* Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.
|
| 668 |
+
|
| 669 |
+
**Average Norm**
|
| 670 |
+
> *Definition:* Mean magnitude (L2 norm) of word vectors in the embedding space.
|
| 671 |
+
>
|
| 672 |
+
> *Intuition:* Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.
|
| 673 |
+
>
|
| 674 |
+
> *What to seek:* Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).
|
| 675 |
+
|
| 676 |
+
**Cosine Similarity**
|
| 677 |
+
> *Definition:* Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).
|
| 678 |
+
>
|
| 679 |
+
> *Intuition:* Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.
|
| 680 |
+
>
|
| 681 |
+
> *What to seek:* Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.
|
| 682 |
+
|
| 683 |
+
**t-SNE Visualization**
|
| 684 |
+
> *Definition:* t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.
|
| 685 |
+
>
|
| 686 |
+
> *Intuition:* Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.
|
| 687 |
+
>
|
| 688 |
+
> *What to seek:* Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.
|
| 689 |
+
|
| 690 |
+
### General Interpretation Guidelines
|
| 691 |
+
|
| 692 |
+
1. **Compare within model families:** Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
|
| 693 |
+
2. **Consider trade-offs:** Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
|
| 694 |
+
3. **Context matters:** Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
|
| 695 |
+
4. **Corpus influence:** All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
|
| 696 |
+
5. **Language-specific patterns:** Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.
|
| 697 |
+
|
| 698 |
+
|
| 699 |
+
### Visualizations Index
|
| 700 |
+
|
| 701 |
+
| Visualization | Description |
|
| 702 |
+
|---------------|-------------|
|
| 703 |
+
| Tokenizer Compression | Compression ratios by vocabulary size |
|
| 704 |
+
| Tokenizer Fertility | Average token length by vocabulary |
|
| 705 |
+
| Tokenizer OOV | Unknown token rates |
|
| 706 |
+
| Tokenizer Total Tokens | Total tokens by vocabulary |
|
| 707 |
+
| N-gram Perplexity | Perplexity by n-gram size |
|
| 708 |
+
| N-gram Entropy | Entropy by n-gram size |
|
| 709 |
+
| N-gram Coverage | Top pattern coverage |
|
| 710 |
+
| N-gram Unique | Unique n-gram counts |
|
| 711 |
+
| Markov Entropy | Entropy by context size |
|
| 712 |
+
| Markov Branching | Branching factor by context |
|
| 713 |
+
| Markov Contexts | Unique context counts |
|
| 714 |
+
| Zipf's Law | Frequency-rank distribution with fit |
|
| 715 |
+
| Vocab Frequency | Word frequency distribution |
|
| 716 |
+
| Top 20 Words | Most frequent words |
|
| 717 |
+
| Vocab Coverage | Cumulative coverage curve |
|
| 718 |
+
| Embedding Isotropy | Vector space uniformity |
|
| 719 |
+
| Embedding Norms | Vector magnitude distribution |
|
| 720 |
+
| Embedding Similarity | Word similarity heatmap |
|
| 721 |
+
| Nearest Neighbors | Similar words for key terms |
|
| 722 |
+
| t-SNE Words | 2D word embedding visualization |
|
| 723 |
+
| t-SNE Sentences | 2D sentence embedding visualization |
|
| 724 |
+
| Position Encoding | Encoding method comparison |
|
| 725 |
+
| Model Sizes | Storage requirements |
|
| 726 |
+
| Performance Dashboard | Comprehensive performance overview |
|
| 727 |
+
|
| 728 |
+
---
|
| 729 |
+
## About This Project
|
| 730 |
+
|
| 731 |
+
### Data Source
|
| 732 |
+
|
| 733 |
+
Models trained on [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - a monthly snapshot of Wikipedia articles across 300+ languages.
|
| 734 |
+
|
| 735 |
+
### Project
|
| 736 |
+
|
| 737 |
+
A project by **[Wikilangs](https://wikilangs.org)** - Open-source NLP models for every Wikipedia language.
|
| 738 |
+
|
| 739 |
+
### Maintainer
|
| 740 |
+
|
| 741 |
+
[Omar Kamali](https://omarkamali.com) - [Omneity Labs](https://omneitylabs.com)
|
| 742 |
+
|
| 743 |
+
### Citation
|
| 744 |
+
|
| 745 |
+
If you use these models in your research, please cite:
|
| 746 |
+
|
| 747 |
+
```bibtex
|
| 748 |
+
@misc{wikilangs2025,
|
| 749 |
+
author = {Kamali, Omar},
|
| 750 |
+
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
|
| 751 |
+
year = {2025},
|
| 752 |
+
doi = {10.5281/zenodo.18073153},
|
| 753 |
+
publisher = {Zenodo},
|
| 754 |
+
url = {https://huggingface.co/wikilangs}
|
| 755 |
+
institution = {Omneity Labs}
|
| 756 |
+
}
|
| 757 |
+
```
|
| 758 |
+
|
| 759 |
+
### License
|
| 760 |
+
|
| 761 |
+
MIT License - Free for academic and commercial use.
|
| 762 |
+
|
| 763 |
+
### Links
|
| 764 |
+
|
| 765 |
+
- 🌐 Website: [wikilangs.org](https://wikilangs.org)
|
| 766 |
+
- 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
|
| 767 |
+
- 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
|
| 768 |
+
- 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
|
| 769 |
+
- 🤝 Sponsor: [Featherless AI](https://featherless.ai)
|
| 770 |
+
---
|
| 771 |
+
*Generated by Wikilangs Models Pipeline*
|
| 772 |
+
|
| 773 |
+
*Report Date: 2026-01-10 16:39:48*
|
models/embeddings/aligned/om_128d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:261d736b5420c5acf514c2f269042ce7099a91dbe2dddb7823c5aec90698430b
|
| 3 |
+
size 1037937003
|
models/embeddings/aligned/om_128d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "om", "dim": 128, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/om_128d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ddc78fce101b6d50f04b0a9879ecb13ab589d3772b72d650de176830961e90a9
|
| 3 |
+
size 65664
|
models/embeddings/aligned/om_128d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "om",
|
| 3 |
+
"dimension": 128,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 1729,
|
| 7 |
+
"vocab_size": 13380
|
| 8 |
+
}
|
models/embeddings/aligned/om_32d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c5f4af3ffca9801e87fe068624e347aa3c1bc8b8d8d32f816378ad9bf10f1b54
|
| 3 |
+
size 259661163
|
models/embeddings/aligned/om_32d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "om", "dim": 32, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/om_32d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1ecc0fa1980bc97af467eccd0053f4a8b3f848b72a2822d8d738f8c4dc9bd1cd
|
| 3 |
+
size 4224
|
models/embeddings/aligned/om_32d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "om",
|
| 3 |
+
"dimension": 32,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 1729,
|
| 7 |
+
"vocab_size": 13380
|
| 8 |
+
}
|
models/embeddings/aligned/om_64d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c28f91c27cad65ca8db9d1fa6ab0ee6789698a239feb37792e9ec0331df403ef
|
| 3 |
+
size 519086443
|
models/embeddings/aligned/om_64d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "om", "dim": 64, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/om_64d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:858ef40c1822aca1d5a0230007d365b6228cdb3f68f426b67cece3c24149b67b
|
| 3 |
+
size 16512
|
models/embeddings/aligned/om_64d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "om",
|
| 3 |
+
"dimension": 64,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 1729,
|
| 7 |
+
"vocab_size": 13380
|
| 8 |
+
}
|
models/embeddings/monolingual/om_128d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:261d736b5420c5acf514c2f269042ce7099a91dbe2dddb7823c5aec90698430b
|
| 3 |
+
size 1037937003
|
models/embeddings/monolingual/om_128d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "om", "dim": 128, "max_seq_len": 512, "is_aligned": false}
|
models/embeddings/monolingual/om_128d_metadata.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "om",
|
| 3 |
+
"dimension": 128,
|
| 4 |
+
"version": "monolingual",
|
| 5 |
+
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
+
"min_count": 5,
|
| 8 |
+
"window": 5,
|
| 9 |
+
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 128,
|
| 13 |
+
"threads": 5
|
| 14 |
+
},
|
| 15 |
+
"vocab_size": 13380
|
| 16 |
+
}
|
models/embeddings/monolingual/om_32d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c5f4af3ffca9801e87fe068624e347aa3c1bc8b8d8d32f816378ad9bf10f1b54
|
| 3 |
+
size 259661163
|
models/embeddings/monolingual/om_32d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "om", "dim": 32, "max_seq_len": 512, "is_aligned": false}
|
models/embeddings/monolingual/om_32d_metadata.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "om",
|
| 3 |
+
"dimension": 32,
|
| 4 |
+
"version": "monolingual",
|
| 5 |
+
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
+
"min_count": 5,
|
| 8 |
+
"window": 5,
|
| 9 |
+
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 32,
|
| 13 |
+
"threads": 5
|
| 14 |
+
},
|
| 15 |
+
"vocab_size": 13380
|
| 16 |
+
}
|
models/embeddings/monolingual/om_64d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c28f91c27cad65ca8db9d1fa6ab0ee6789698a239feb37792e9ec0331df403ef
|
| 3 |
+
size 519086443
|
models/embeddings/monolingual/om_64d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "om", "dim": 64, "max_seq_len": 512, "is_aligned": false}
|
models/embeddings/monolingual/om_64d_metadata.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "om",
|
| 3 |
+
"dimension": 64,
|
| 4 |
+
"version": "monolingual",
|
| 5 |
+
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
+
"min_count": 5,
|
| 8 |
+
"window": 5,
|
| 9 |
+
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 64,
|
| 13 |
+
"threads": 5
|
| 14 |
+
},
|
| 15 |
+
"vocab_size": 13380
|
| 16 |
+
}
|
models/subword_markov/om_markov_ctx1_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c875f061e97bb0b6b556e831d91ac7b1cde7882ecd25f86409bbd8826a340897
|
| 3 |
+
size 59391
|
models/subword_markov/om_markov_ctx1_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"context_size": 1,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "om",
|
| 5 |
+
"unique_contexts": 768,
|
| 6 |
+
"total_transitions": 4398778
|
| 7 |
+
}
|
models/subword_markov/om_markov_ctx2_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f3f061a3c8a86a06a73f49467804788d656425dd3e2c18c5cb03fa5d31df0ba5
|
| 3 |
+
size 300707
|
models/subword_markov/om_markov_ctx2_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"context_size": 2,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "om",
|
| 5 |
+
"unique_contexts": 7870,
|
| 6 |
+
"total_transitions": 4396490
|
| 7 |
+
}
|
models/subword_markov/om_markov_ctx3_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:75933dc4a5375fd6814fb0d4da1d5cfd81e284e431ce8f10b7a3eaa265ce3d23
|
| 3 |
+
size 1038503
|
models/subword_markov/om_markov_ctx3_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"context_size": 3,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "om",
|
| 5 |
+
"unique_contexts": 36941,
|
| 6 |
+
"total_transitions": 4394202
|
| 7 |
+
}
|
models/subword_markov/om_markov_ctx4_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2074584fbcf1c1faed0d9435149ff1de0f7b9c0728ecfcf00446e9034032ce39
|
| 3 |
+
size 2621657
|
models/subword_markov/om_markov_ctx4_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"context_size": 4,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "om",
|
| 5 |
+
"unique_contexts": 129933,
|
| 6 |
+
"total_transitions": 4391914
|
| 7 |
+
}
|
models/subword_ngram/om_2gram_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c1b263a4f167615ac76402bfa0151e85cc2500001cf40158d261c72bcd314ede
|
| 3 |
+
size 37373
|
models/subword_ngram/om_2gram_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 2,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "om",
|
| 5 |
+
"unique_ngrams": 2915,
|
| 6 |
+
"total_ngrams": 4398778
|
| 7 |
+
}
|
models/subword_ngram/om_3gram_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:643a9700ec72a446fd7bdef164890e8420f3746ce222cd35645058622626655b
|
| 3 |
+
size 205696
|
models/subword_ngram/om_3gram_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 3,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "om",
|
| 5 |
+
"unique_ngrams": 17267,
|
| 6 |
+
"total_ngrams": 4396490
|
| 7 |
+
}
|
models/subword_ngram/om_4gram_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:29d91bdabe517943f691ce9d8f20aba5c14432a00929a45419bdc4988a5eeaec
|
| 3 |
+
size 845241
|
models/subword_ngram/om_4gram_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 4,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "om",
|
| 5 |
+
"unique_ngrams": 73751,
|
| 6 |
+
"total_ngrams": 4394202
|
| 7 |
+
}
|
models/subword_ngram/om_5gram_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3b37399ec2e2bc2c3b7f0b71befd6e3939340e62ad8296fa20e750dbd3851b6d
|
| 3 |
+
size 1872257
|
models/subword_ngram/om_5gram_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 5,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "om",
|
| 5 |
+
"unique_ngrams": 164495,
|
| 6 |
+
"total_ngrams": 4391914
|
| 7 |
+
}
|
models/tokenizer/om_tokenizer_16k.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:92a6d85156fb9e28c530de86ae3cd8da78fb5f35ce0acbc4c83b847cea52f90f
|
| 3 |
+
size 516097
|
models/tokenizer/om_tokenizer_16k.vocab
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/om_tokenizer_32k.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f86da51fd2ebf98a59efc078835ae5161f3bfa4ae9eb57bd8e2a433c357fa4fb
|
| 3 |
+
size 808675
|
models/tokenizer/om_tokenizer_32k.vocab
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/om_tokenizer_64k.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:84b5d85192610381397eae343702cf5926014653cf2035651706fd44a7c1b9dc
|
| 3 |
+
size 1431137
|
models/tokenizer/om_tokenizer_64k.vocab
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/om_tokenizer_8k.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f8633fc60c53cbd74265cafcc6d6c604bc04ff8d21e95b6a92b2ec85ca43091e
|
| 3 |
+
size 376649
|
models/tokenizer/om_tokenizer_8k.vocab
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/vocabulary/om_vocabulary.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:519799836813c9a69bd8413c985650d23ffbf3c0b1e187d2a79bfebe847ba6bc
|
| 3 |
+
size 571803
|
models/vocabulary/om_vocabulary_metadata.json
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "om",
|
| 3 |
+
"vocabulary_size": 33399,
|
| 4 |
+
"variant": "full",
|
| 5 |
+
"statistics": {
|
| 6 |
+
"type_token_ratio": 0.13283899225246473,
|
| 7 |
+
"coverage": {
|
| 8 |
+
"top_100": 0.2968769314548595,
|
| 9 |
+
"top_1000": 0.551282736593824,
|
| 10 |
+
"top_5000": 0.7373421844775342,
|
| 11 |
+
"top_10000": 0.8098596490055826
|
| 12 |
+
},
|
| 13 |
+
"hapax_count": 46124,
|
| 14 |
+
"hapax_ratio": 0.5800082994856833,
|
| 15 |
+
"total_documents": 2288
|
| 16 |
+
}
|
| 17 |
+
}
|
models/word_markov/om_markov_ctx1_word.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5cb8759f305e468b2447c1f8af9b1a3e9e846ca993c72d749ef0a141309dff28
|
| 3 |
+
size 2848656
|