Upload all models and assets for cs (latest)
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- README.md +341 -141
- models/embeddings/aligned/cs_128d.bin +3 -0
- models/embeddings/aligned/cs_128d.meta.json +1 -0
- models/embeddings/aligned/cs_128d.projection.npy +3 -0
- models/embeddings/aligned/cs_128d_metadata.json +8 -0
- models/embeddings/aligned/cs_32d.bin +3 -0
- models/embeddings/aligned/cs_32d.meta.json +1 -0
- models/embeddings/aligned/cs_32d.projection.npy +3 -0
- models/embeddings/aligned/cs_32d_metadata.json +8 -0
- models/embeddings/aligned/cs_64d.bin +3 -0
- models/embeddings/aligned/cs_64d.meta.json +1 -0
- models/embeddings/aligned/cs_64d.projection.npy +3 -0
- models/embeddings/aligned/cs_64d_metadata.json +8 -0
- models/embeddings/monolingual/cs_128d.bin +2 -2
- models/embeddings/monolingual/cs_128d_metadata.json +5 -3
- models/embeddings/monolingual/cs_32d.bin +2 -2
- models/embeddings/monolingual/cs_32d_metadata.json +5 -3
- models/embeddings/monolingual/cs_64d.bin +2 -2
- models/embeddings/monolingual/cs_64d_metadata.json +5 -3
- models/subword_markov/cs_markov_ctx1_subword.parquet +2 -2
- models/subword_markov/cs_markov_ctx1_subword_metadata.json +2 -2
- models/subword_markov/cs_markov_ctx2_subword.parquet +2 -2
- models/subword_markov/cs_markov_ctx2_subword_metadata.json +2 -2
- models/subword_markov/cs_markov_ctx3_subword.parquet +2 -2
- models/subword_markov/cs_markov_ctx3_subword_metadata.json +2 -2
- models/subword_markov/cs_markov_ctx4_subword.parquet +2 -2
- models/subword_markov/cs_markov_ctx4_subword_metadata.json +2 -2
- models/subword_ngram/cs_2gram_subword.parquet +2 -2
- models/subword_ngram/cs_2gram_subword_metadata.json +2 -2
- models/subword_ngram/cs_3gram_subword.parquet +2 -2
- models/subword_ngram/cs_3gram_subword_metadata.json +2 -2
- models/subword_ngram/cs_4gram_subword.parquet +2 -2
- models/subword_ngram/cs_4gram_subword_metadata.json +2 -2
- models/subword_ngram/cs_5gram_subword.parquet +3 -0
- models/subword_ngram/cs_5gram_subword_metadata.json +7 -0
- models/tokenizer/cs_tokenizer_16k.model +2 -2
- models/tokenizer/cs_tokenizer_16k.vocab +0 -0
- models/tokenizer/cs_tokenizer_32k.model +2 -2
- models/tokenizer/cs_tokenizer_32k.vocab +0 -0
- models/tokenizer/cs_tokenizer_64k.model +2 -2
- models/tokenizer/cs_tokenizer_64k.vocab +0 -0
- models/tokenizer/cs_tokenizer_8k.model +2 -2
- models/tokenizer/cs_tokenizer_8k.vocab +0 -0
- models/vocabulary/cs_vocabulary.parquet +2 -2
- models/vocabulary/cs_vocabulary_metadata.json +10 -9
- models/vocabulary/cs_vocabulary_top.parquet +3 -0
- models/vocabulary/cs_vocabulary_top_metadata.json +20 -0
- models/word_markov/cs_markov_ctx1_word.parquet +2 -2
- models/word_markov/cs_markov_ctx1_word_metadata.json +2 -2
.gitattributes
CHANGED
|
@@ -39,3 +39,4 @@ visualizations/position_encoding_comparison.png filter=lfs diff=lfs merge=lfs -t
|
|
| 39 |
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 39 |
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
visualizations/embedding_tsne_multilingual.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -10,11 +10,21 @@ tags:
|
|
| 10 |
- n-gram
|
| 11 |
- markov
|
| 12 |
- wikipedia
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
- monolingual
|
| 14 |
- family-slavic_west
|
| 15 |
license: mit
|
| 16 |
library_name: wikilangs
|
| 17 |
-
pipeline_tag:
|
| 18 |
datasets:
|
| 19 |
- omarkamali/wikipedia-monthly
|
| 20 |
dataset_info:
|
|
@@ -23,14 +33,14 @@ dataset_info:
|
|
| 23 |
metrics:
|
| 24 |
- name: best_compression_ratio
|
| 25 |
type: compression
|
| 26 |
-
value: 4.
|
| 27 |
- name: best_isotropy
|
| 28 |
type: isotropy
|
| 29 |
-
value: 0.
|
| 30 |
- name: vocabulary_size
|
| 31 |
type: vocab
|
| 32 |
-
value:
|
| 33 |
-
generated:
|
| 34 |
---
|
| 35 |
|
| 36 |
# Czech - Wikilangs Models
|
|
@@ -44,12 +54,13 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 44 |
### Models & Assets
|
| 45 |
|
| 46 |
- Tokenizers (8k, 16k, 32k, 64k)
|
| 47 |
-
- N-gram models (2, 3, 4-gram)
|
| 48 |
-
- Markov chains (context of 1, 2, 3 and
|
| 49 |
- Subword N-gram and Markov chains
|
| 50 |
-
- Embeddings in various sizes and dimensions
|
| 51 |
- Language Vocabulary
|
| 52 |
- Language Statistics
|
|
|
|
| 53 |

|
| 54 |
|
| 55 |
### Analysis and Evaluation
|
|
@@ -59,7 +70,8 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 59 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 60 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 61 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 62 |
-
- [6.
|
|
|
|
| 63 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 64 |
- [Visualizations Index](#visualizations-index)
|
| 65 |
|
|
@@ -68,57 +80,57 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 68 |
|
| 69 |

|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
### Results
|
| 72 |
|
| 73 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 74 |
|------------|-------------|---------------|----------|--------------|
|
| 75 |
-
| **8k** | 3.
|
| 76 |
-
| **16k** | 3.
|
| 77 |
-
| **32k** |
|
| 78 |
-
| **64k** | 4.
|
| 79 |
|
| 80 |
### Tokenization Examples
|
| 81 |
|
| 82 |
Below are sample sentences tokenized with each vocabulary size:
|
| 83 |
|
| 84 |
-
**Sample 1:**
|
| 85 |
-
SK Sigma Olomouc – fotbalo...`
|
| 86 |
|
| 87 |
| Vocab | Tokens | Count |
|
| 88 |
|-------|--------|-------|
|
| 89 |
-
| 8k |
|
| 90 |
-
| 16k |
|
| 91 |
-
| 32k |
|
| 92 |
-
| 64k |
|
| 93 |
|
| 94 |
-
**Sample 2:** `
|
| 95 |
-
|
| 96 |
-
Kategorie:Přesměrování z vědeckého jména`
|
| 97 |
|
| 98 |
| Vocab | Tokens | Count |
|
| 99 |
|-------|--------|-------|
|
| 100 |
-
| 8k | `▁
|
| 101 |
-
| 16k | `▁
|
| 102 |
-
| 32k | `▁
|
| 103 |
-
| 64k | `▁
|
| 104 |
-
|
| 105 |
-
**Sample 3:** `Pello jsou dvě obce se stejným názvem:
|
| 106 |
|
| 107 |
-
|
| 108 |
-
Pello ...`
|
| 109 |
|
| 110 |
| Vocab | Tokens | Count |
|
| 111 |
|-------|--------|-------|
|
| 112 |
-
| 8k | `▁
|
| 113 |
-
| 16k | `▁
|
| 114 |
-
| 32k | `▁
|
| 115 |
-
| 64k | `▁
|
| 116 |
|
| 117 |
|
| 118 |
### Key Findings
|
| 119 |
|
| 120 |
-
- **Best Compression:** 64k achieves 4.
|
| 121 |
-
- **Lowest UNK Rate:** 8k with 0.
|
| 122 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 123 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 124 |
|
|
@@ -127,57 +139,111 @@ Kategorie:Přesměrování z vědeckého jména`
|
|
| 127 |
|
| 128 |

|
| 129 |
|
|
|
|
|
|
|
| 130 |

|
| 131 |
|
| 132 |
### Results
|
| 133 |
|
| 134 |
-
| N-gram | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 135 |
-
|
| 136 |
-
| **2-gram** |
|
| 137 |
-
| **2-gram** |
|
| 138 |
-
| **3-gram** |
|
| 139 |
-
| **3-gram** |
|
| 140 |
-
| **4-gram** |
|
| 141 |
-
| **4-gram** |
|
|
|
|
|
|
|
| 142 |
|
| 143 |
### Top 5 N-grams by Size
|
| 144 |
|
| 145 |
-
**2-grams:**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
| Rank | N-gram | Count |
|
| 148 |
|------|--------|-------|
|
| 149 |
-
| 1 | `
|
| 150 |
-
| 2 |
|
| 151 |
-
| 3 | `v roce` |
|
| 152 |
-
| 4 |
|
| 153 |
-
| 5 | `
|
| 154 |
|
| 155 |
-
**
|
| 156 |
|
| 157 |
| Rank | N-gram | Count |
|
| 158 |
|------|--------|-------|
|
| 159 |
-
| 1 |
|
| 160 |
-
| 2 |
|
| 161 |
-
| 3 | `
|
| 162 |
-
| 4 |
|
| 163 |
-
| 5 | `
|
| 164 |
|
| 165 |
-
**
|
| 166 |
|
| 167 |
| Rank | N-gram | Count |
|
| 168 |
|------|--------|-------|
|
| 169 |
-
| 1 |
|
| 170 |
-
| 2 |
|
| 171 |
-
| 3 | `
|
| 172 |
-
| 4 | `
|
| 173 |
-
| 5 | `
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
|
| 176 |
### Key Findings
|
| 177 |
|
| 178 |
-
- **Best Perplexity:** 2-gram with
|
| 179 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 180 |
-
- **Coverage:** Top-1000 patterns cover ~
|
| 181 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 182 |
|
| 183 |
---
|
|
@@ -185,55 +251,86 @@ Kategorie:Přesměrování z vědeckého jména`
|
|
| 185 |
|
| 186 |

|
| 187 |
|
|
|
|
|
|
|
| 188 |

|
| 189 |
|
| 190 |
### Results
|
| 191 |
|
| 192 |
-
| Context | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 193 |
-
|
| 194 |
-
| **1** |
|
| 195 |
-
| **1** | 1.
|
| 196 |
-
| **2** | 0.
|
| 197 |
-
| **2** | 0.
|
| 198 |
-
| **3** | 0.
|
| 199 |
-
| **3** | 0.
|
| 200 |
-
| **4** | 0.
|
| 201 |
-
| **4** | 0.
|
| 202 |
|
| 203 |
-
### Generated Text Samples
|
| 204 |
|
| 205 |
-
Below are text samples generated from each Markov chain model:
|
| 206 |
|
| 207 |
**Context Size 1:**
|
| 208 |
|
| 209 |
-
1.
|
| 210 |
-
2.
|
| 211 |
-
3. `
|
| 212 |
|
| 213 |
**Context Size 2:**
|
| 214 |
|
| 215 |
-
1. `
|
| 216 |
-
2.
|
| 217 |
-
3. `
|
| 218 |
|
| 219 |
**Context Size 3:**
|
| 220 |
|
| 221 |
-
1.
|
| 222 |
-
2.
|
| 223 |
-
3. `
|
| 224 |
|
| 225 |
**Context Size 4:**
|
| 226 |
|
| 227 |
-
1.
|
| 228 |
-
2.
|
| 229 |
-
3. `
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
|
| 231 |
|
| 232 |
### Key Findings
|
| 233 |
|
| 234 |
-
- **Best Predictability:** Context-4 with
|
| 235 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 236 |
-
- **Memory Trade-off:** Larger contexts require more storage (
|
| 237 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 238 |
|
| 239 |
---
|
|
@@ -249,64 +346,64 @@ Below are text samples generated from each Markov chain model:
|
|
| 249 |
|
| 250 |
| Metric | Value |
|
| 251 |
|--------|-------|
|
| 252 |
-
| Vocabulary Size | 1,
|
| 253 |
-
| Total Tokens |
|
| 254 |
-
| Mean Frequency |
|
| 255 |
-
| Median Frequency |
|
| 256 |
-
| Frequency Std Dev |
|
| 257 |
|
| 258 |
### Most Common Words
|
| 259 |
|
| 260 |
| Rank | Word | Frequency |
|
| 261 |
|------|------|-----------|
|
| 262 |
-
| 1 | v | 7,
|
| 263 |
-
| 2 | a | 6,
|
| 264 |
-
| 3 | na | 3,
|
| 265 |
-
| 4 | se | 3,
|
| 266 |
-
| 5 |
|
| 267 |
-
| 6 |
|
| 268 |
-
| 7 |
|
| 269 |
-
| 8 |
|
| 270 |
-
| 9 |
|
| 271 |
-
| 10 |
|
| 272 |
|
| 273 |
### Least Common Words (from vocabulary)
|
| 274 |
|
| 275 |
| Rank | Word | Frequency |
|
| 276 |
|------|------|-----------|
|
| 277 |
-
| 1 |
|
| 278 |
-
| 2 |
|
| 279 |
-
| 3 |
|
| 280 |
-
| 4 |
|
| 281 |
-
| 5 |
|
| 282 |
-
| 6 |
|
| 283 |
-
| 7 |
|
| 284 |
-
| 8 |
|
| 285 |
-
| 9 |
|
| 286 |
-
| 10 |
|
| 287 |
|
| 288 |
### Zipf's Law Analysis
|
| 289 |
|
| 290 |
| Metric | Value |
|
| 291 |
|--------|-------|
|
| 292 |
-
| Zipf Coefficient | 0.
|
| 293 |
-
| R² (Goodness of Fit) | 0.
|
| 294 |
| Adherence Quality | **excellent** |
|
| 295 |
|
| 296 |
### Coverage Analysis
|
| 297 |
|
| 298 |
| Top N Words | Coverage |
|
| 299 |
|-------------|----------|
|
| 300 |
-
| Top 100 | 27.
|
| 301 |
-
| Top 1,000 |
|
| 302 |
-
| Top 5,000 |
|
| 303 |
-
| Top 10,000 |
|
| 304 |
|
| 305 |
### Key Findings
|
| 306 |
|
| 307 |
-
- **Zipf Compliance:** R²=0.
|
| 308 |
-
- **High Frequency Dominance:** Top 100 words cover 27.
|
| 309 |
-
- **Long Tail:**
|
| 310 |
|
| 311 |
---
|
| 312 |
## 5. Word Embeddings Evaluation
|
|
@@ -319,24 +416,124 @@ Below are text samples generated from each Markov chain model:
|
|
| 319 |
|
| 320 |

|
| 321 |
|
| 322 |
-
### Model Comparison
|
| 323 |
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 330 |
|
| 331 |
### Key Findings
|
| 332 |
|
| 333 |
-
- **Best Isotropy:**
|
| 334 |
-
- **
|
| 335 |
-
- **
|
| 336 |
-
- **Recommendation:**
|
| 337 |
|
| 338 |
---
|
| 339 |
-
## 6.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 340 |
|
| 341 |

|
| 342 |
|
|
@@ -344,11 +541,12 @@ Below are text samples generated from each Markov chain model:
|
|
| 344 |
|
| 345 |
| Component | Recommended | Rationale |
|
| 346 |
|-----------|-------------|-----------|
|
| 347 |
-
| Tokenizer | **
|
| 348 |
-
| N-gram | **
|
| 349 |
-
| Markov | **Context-4** | Highest predictability (
|
| 350 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 351 |
|
|
|
|
| 352 |
---
|
| 353 |
## Appendix: Metrics Glossary & Interpretation Guide
|
| 354 |
|
|
@@ -538,7 +736,8 @@ If you use these models in your research, please cite:
|
|
| 538 |
author = {Kamali, Omar},
|
| 539 |
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
|
| 540 |
year = {2025},
|
| 541 |
-
|
|
|
|
| 542 |
url = {https://huggingface.co/wikilangs}
|
| 543 |
institution = {Omneity Labs}
|
| 544 |
}
|
|
@@ -554,7 +753,8 @@ MIT License - Free for academic and commercial use.
|
|
| 554 |
- 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
|
| 555 |
- 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
|
| 556 |
- 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
|
|
|
|
| 557 |
---
|
| 558 |
*Generated by Wikilangs Models Pipeline*
|
| 559 |
|
| 560 |
-
*Report Date:
|
|
|
|
| 10 |
- n-gram
|
| 11 |
- markov
|
| 12 |
- wikipedia
|
| 13 |
+
- feature-extraction
|
| 14 |
+
- sentence-similarity
|
| 15 |
+
- tokenization
|
| 16 |
+
- n-grams
|
| 17 |
+
- markov-chain
|
| 18 |
+
- text-mining
|
| 19 |
+
- fasttext
|
| 20 |
+
- babelvec
|
| 21 |
+
- vocabulous
|
| 22 |
+
- vocabulary
|
| 23 |
- monolingual
|
| 24 |
- family-slavic_west
|
| 25 |
license: mit
|
| 26 |
library_name: wikilangs
|
| 27 |
+
pipeline_tag: text-generation
|
| 28 |
datasets:
|
| 29 |
- omarkamali/wikipedia-monthly
|
| 30 |
dataset_info:
|
|
|
|
| 33 |
metrics:
|
| 34 |
- name: best_compression_ratio
|
| 35 |
type: compression
|
| 36 |
+
value: 4.591
|
| 37 |
- name: best_isotropy
|
| 38 |
type: isotropy
|
| 39 |
+
value: 0.7988
|
| 40 |
- name: vocabulary_size
|
| 41 |
type: vocab
|
| 42 |
+
value: 0
|
| 43 |
+
generated: 2026-01-08
|
| 44 |
---
|
| 45 |
|
| 46 |
# Czech - Wikilangs Models
|
|
|
|
| 54 |
### Models & Assets
|
| 55 |
|
| 56 |
- Tokenizers (8k, 16k, 32k, 64k)
|
| 57 |
+
- N-gram models (2, 3, 4, 5-gram)
|
| 58 |
+
- Markov chains (context of 1, 2, 3, 4 and 5)
|
| 59 |
- Subword N-gram and Markov chains
|
| 60 |
+
- Embeddings in various sizes and dimensions (aligned and unaligned)
|
| 61 |
- Language Vocabulary
|
| 62 |
- Language Statistics
|
| 63 |
+
|
| 64 |

|
| 65 |
|
| 66 |
### Analysis and Evaluation
|
|
|
|
| 70 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 71 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 72 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 73 |
+
- [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental)
|
| 74 |
+
- [7. Summary & Recommendations](#7-summary--recommendations)
|
| 75 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 76 |
- [Visualizations Index](#visualizations-index)
|
| 77 |
|
|
|
|
| 80 |
|
| 81 |

|
| 82 |
|
| 83 |
+

|
| 84 |
+
|
| 85 |
+

|
| 86 |
+
|
| 87 |
+

|
| 88 |
+
|
| 89 |
### Results
|
| 90 |
|
| 91 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 92 |
|------------|-------------|---------------|----------|--------------|
|
| 93 |
+
| **8k** | 3.417x | 3.42 | 0.0769% | 2,893,388 |
|
| 94 |
+
| **16k** | 3.845x | 3.85 | 0.0865% | 2,570,989 |
|
| 95 |
+
| **32k** | 4.245x | 4.25 | 0.0955% | 2,328,840 |
|
| 96 |
+
| **64k** | 4.591x 🏆 | 4.59 | 0.1033% | 2,153,192 |
|
| 97 |
|
| 98 |
### Tokenization Examples
|
| 99 |
|
| 100 |
Below are sample sentences tokenized with each vocabulary size:
|
| 101 |
|
| 102 |
+
**Sample 1:** `<tr> Související články Seznam kulturních památek v okrese Znojmo Externí odkazy...`
|
|
|
|
| 103 |
|
| 104 |
| Vocab | Tokens | Count |
|
| 105 |
|-------|--------|-------|
|
| 106 |
+
| 8k | `▁< tr > ▁související ▁články ▁seznam ▁kultur ních ▁pam átek ... (+17 more)` | 27 |
|
| 107 |
+
| 16k | `▁< tr > ▁související ▁články ▁seznam ▁kulturních ▁památek ▁v ▁okrese ... (+13 more)` | 23 |
|
| 108 |
+
| 32k | `▁< tr > ▁související ▁články ▁seznam ▁kulturních ▁památek ▁v ▁okrese ... (+11 more)` | 21 |
|
| 109 |
+
| 64k | `▁< tr > ▁související ▁články ▁seznam ▁kulturních ▁památek ▁v ▁okrese ... (+11 more)` | 21 |
|
| 110 |
|
| 111 |
+
**Sample 2:** `Mirovice <tr> Sochovice <tr> Související články Seznam kulturních památek v okre...`
|
|
|
|
|
|
|
| 112 |
|
| 113 |
| Vocab | Tokens | Count |
|
| 114 |
|-------|--------|-------|
|
| 115 |
+
| 8k | `▁mi rovice ▁< tr > ▁so ch ovice ▁< tr ... (+17 more)` | 27 |
|
| 116 |
+
| 16k | `▁mi rovice ▁< tr > ▁so chovice ▁< tr > ... (+14 more)` | 24 |
|
| 117 |
+
| 32k | `▁mi rovice ▁< tr > ▁so chovice ▁< tr > ... (+14 more)` | 24 |
|
| 118 |
+
| 64k | `▁mi rovice ▁< tr > ▁so chovice ▁< tr > ... (+14 more)` | 24 |
|
|
|
|
|
|
|
| 119 |
|
| 120 |
+
**Sample 3:** `Sabra může být: sabra – hebrejské slovo Sabra (tank) Sabra – sídlo v Libanonu, d...`
|
|
|
|
| 121 |
|
| 122 |
| Vocab | Tokens | Count |
|
| 123 |
|-------|--------|-------|
|
| 124 |
+
| 8k | `▁sa bra ▁může ▁být : ▁sa bra ▁– ▁hebrej ské ... (+22 more)` | 32 |
|
| 125 |
+
| 16k | `▁sa bra ▁může ▁být : ▁sa bra ▁– ▁hebrej ské ... (+21 more)` | 31 |
|
| 126 |
+
| 32k | `▁sa bra ▁může ▁být : ▁sa bra ▁– ▁hebrejské ▁slovo ... (+17 more)` | 27 |
|
| 127 |
+
| 64k | `▁sa bra ▁může ▁být : ▁sa bra ▁– ▁hebrejské ▁slovo ... (+15 more)` | 25 |
|
| 128 |
|
| 129 |
|
| 130 |
### Key Findings
|
| 131 |
|
| 132 |
+
- **Best Compression:** 64k achieves 4.591x compression
|
| 133 |
+
- **Lowest UNK Rate:** 8k with 0.0769% unknown tokens
|
| 134 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 135 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 136 |
|
|
|
|
| 139 |
|
| 140 |

|
| 141 |
|
| 142 |
+

|
| 143 |
+
|
| 144 |

|
| 145 |
|
| 146 |
### Results
|
| 147 |
|
| 148 |
+
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 149 |
+
|--------|---------|------------|---------|----------------|------------------|-------------------|
|
| 150 |
+
| **2-gram** | Word | 644,039 | 19.30 | 4,952,358 | 4.8% | 11.9% |
|
| 151 |
+
| **2-gram** | Subword | 449 🏆 | 8.81 | 30,223 | 53.9% | 98.0% |
|
| 152 |
+
| **3-gram** | Word | 2,339,059 | 21.16 | 8,925,525 | 2.6% | 6.4% |
|
| 153 |
+
| **3-gram** | Subword | 4,755 | 12.22 | 255,109 | 16.7% | 54.3% |
|
| 154 |
+
| **4-gram** | Word | 5,475,376 | 22.38 | 14,408,434 | 1.3% | 3.9% |
|
| 155 |
+
| **4-gram** | Subword | 32,796 | 15.00 | 1,646,964 | 6.8% | 24.8% |
|
| 156 |
+
| **5-gram** | Word | 4,645,198 | 22.15 | 10,221,820 | 1.0% | 3.6% |
|
| 157 |
+
| **5-gram** | Subword | 160,592 | 17.29 | 6,437,902 | 3.7% | 13.8% |
|
| 158 |
|
| 159 |
### Top 5 N-grams by Size
|
| 160 |
|
| 161 |
+
**2-grams (Word):**
|
| 162 |
+
|
| 163 |
+
| Rank | N-gram | Count |
|
| 164 |
+
|------|--------|-------|
|
| 165 |
+
| 1 | `v roce` | 1,319,715 |
|
| 166 |
+
| 2 | `externí odkazy` | 445,741 |
|
| 167 |
+
| 3 | `odkazy reference` | 238,320 |
|
| 168 |
+
| 4 | `reference externí` | 226,335 |
|
| 169 |
+
| 5 | `v letech` | 212,278 |
|
| 170 |
+
|
| 171 |
+
**3-grams (Word):**
|
| 172 |
+
|
| 173 |
+
| Rank | N-gram | Count |
|
| 174 |
+
|------|--------|-------|
|
| 175 |
+
| 1 | `reference externí odkazy` | 226,294 |
|
| 176 |
+
| 2 | `odkazy reference externí` | 124,877 |
|
| 177 |
+
| 3 | `v roce v` | 123,855 |
|
| 178 |
+
| 4 | `v roce se` | 91,582 |
|
| 179 |
+
| 5 | `v roce byl` | 64,824 |
|
| 180 |
+
|
| 181 |
+
**4-grams (Word):**
|
| 182 |
|
| 183 |
| Rank | N-gram | Count |
|
| 184 |
|------|--------|-------|
|
| 185 |
+
| 1 | `odkazy reference externí odkazy` | 124,850 |
|
| 186 |
+
| 2 | `odkazy reference související články` | 42,127 |
|
| 187 |
+
| 3 | `v roce v roce` | 34,075 |
|
| 188 |
+
| 4 | `reference externí odkazy v` | 29,798 |
|
| 189 |
+
| 5 | `externí odkazy oficiální stránky` | 20,103 |
|
| 190 |
|
| 191 |
+
**5-grams (Word):**
|
| 192 |
|
| 193 |
| Rank | N-gram | Count |
|
| 194 |
|------|--------|-------|
|
| 195 |
+
| 1 | `odkazy reference externí odkazy v` | 16,236 |
|
| 196 |
+
| 2 | `odkazy reference literatura externí odkazy` | 12,685 |
|
| 197 |
+
| 3 | `reference externí odkazy oficiální stránky` | 11,834 |
|
| 198 |
+
| 4 | `historie první písemná zmínka o` | 11,754 |
|
| 199 |
+
| 5 | `reference externí odkazy v okrese` | 11,425 |
|
| 200 |
|
| 201 |
+
**2-grams (Subword):**
|
| 202 |
|
| 203 |
| Rank | N-gram | Count |
|
| 204 |
|------|--------|-------|
|
| 205 |
+
| 1 | `a _` | 24,781,439 |
|
| 206 |
+
| 2 | `_ p` | 22,589,509 |
|
| 207 |
+
| 3 | `e _` | 22,268,109 |
|
| 208 |
+
| 4 | `_ s` | 22,095,879 |
|
| 209 |
+
| 5 | `_ v` | 19,926,387 |
|
| 210 |
+
|
| 211 |
+
**3-grams (Subword):**
|
| 212 |
+
|
| 213 |
+
| Rank | N-gram | Count |
|
| 214 |
+
|------|--------|-------|
|
| 215 |
+
| 1 | `n í _` | 7,673,842 |
|
| 216 |
+
| 2 | `_ p o` | 7,582,650 |
|
| 217 |
+
| 3 | `_ v _` | 7,272,309 |
|
| 218 |
+
| 4 | `n a _` | 6,690,107 |
|
| 219 |
+
| 5 | `_ a _` | 6,501,417 |
|
| 220 |
+
|
| 221 |
+
**4-grams (Subword):**
|
| 222 |
+
|
| 223 |
+
| Rank | N-gram | Count |
|
| 224 |
+
|------|--------|-------|
|
| 225 |
+
| 1 | `_ n a _` | 3,511,209 |
|
| 226 |
+
| 2 | `_ s e _` | 3,364,693 |
|
| 227 |
+
| 3 | `_ p r o` | 3,186,267 |
|
| 228 |
+
| 4 | `_ b y l` | 2,542,448 |
|
| 229 |
+
| 5 | `ý c h _` | 2,252,305 |
|
| 230 |
+
|
| 231 |
+
**5-grams (Subword):**
|
| 232 |
+
|
| 233 |
+
| Rank | N-gram | Count |
|
| 234 |
+
|------|--------|-------|
|
| 235 |
+
| 1 | `_ k t e r` | 1,412,346 |
|
| 236 |
+
| 2 | `_ r o c e` | 1,383,042 |
|
| 237 |
+
| 3 | `_ v _ r o` | 1,382,611 |
|
| 238 |
+
| 4 | `r o c e _` | 1,354,432 |
|
| 239 |
+
| 5 | `v _ r o c` | 1,321,210 |
|
| 240 |
|
| 241 |
|
| 242 |
### Key Findings
|
| 243 |
|
| 244 |
+
- **Best Perplexity:** 2-gram (subword) with 449
|
| 245 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 246 |
+
- **Coverage:** Top-1000 patterns cover ~14% of corpus
|
| 247 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 248 |
|
| 249 |
---
|
|
|
|
| 251 |
|
| 252 |

|
| 253 |
|
| 254 |
+

|
| 255 |
+
|
| 256 |

|
| 257 |
|
| 258 |
### Results
|
| 259 |
|
| 260 |
+
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 261 |
+
|---------|---------|-------------|------------|------------------|-----------------|----------------|
|
| 262 |
+
| **1** | Word | 1.0698 | 2.099 | 16.20 | 3,817,910 | 0.0% |
|
| 263 |
+
| **1** | Subword | 1.2123 | 2.317 | 8.62 | 14,369 | 0.0% |
|
| 264 |
+
| **2** | Word | 0.3832 | 1.304 | 2.35 | 61,779,051 | 61.7% |
|
| 265 |
+
| **2** | Subword | 0.6716 | 1.593 | 4.71 | 123,767 | 32.8% |
|
| 266 |
+
| **3** | Word | 0.1433 | 1.104 | 1.31 | 144,949,424 | 85.7% |
|
| 267 |
+
| **3** | Subword | 0.7660 | 1.701 | 4.77 | 583,275 | 23.4% |
|
| 268 |
+
| **4** | Word | 0.0564 🏆 | 1.040 | 1.10 | 189,649,924 | 94.4% |
|
| 269 |
+
| **4** | Subword | 0.7409 | 1.671 | 4.00 | 2,782,368 | 25.9% |
|
| 270 |
|
| 271 |
+
### Generated Text Samples (Word-based)
|
| 272 |
|
| 273 |
+
Below are text samples generated from each word-based Markov chain model:
|
| 274 |
|
| 275 |
**Context Size 1:**
|
| 276 |
|
| 277 |
+
1. `v podobě vystavěn byl opětovně pohřbena ve dveřích některých případech může vytvořit jediné dopravní...`
|
| 278 |
+
2. `a příslušník staré město zbiroh živa je americký teoretický kvantový stav potrvá v létě odešel na`
|
| 279 |
+
3. `na fakt že neměl v červenci i z původních 113 120 metrů vysokém tlaku na východě`
|
| 280 |
|
| 281 |
**Context Size 2:**
|
| 282 |
|
| 283 |
+
1. `v roce lidé 6 prosince praha byl michal kraus čssd čssd 48 rychnov nad kněžnou kaple stojí`
|
| 284 |
+
2. `externí odkazy jihovýchodní evropy jihozápadní asie kavkazu číny sibiře východní asie hustě chlupatá...`
|
| 285 |
+
3. `odkazy reference externí odkazy sdružení na praze 4 rozhovor vznikl v roce kde bojoval proti ostrogó...`
|
| 286 |
|
| 287 |
**Context Size 3:**
|
| 288 |
|
| 289 |
+
1. `reference externí odkazy v ternopilské oblasti na řece strypa v historickém regionu horní lužice mim...`
|
| 290 |
+
2. `odkazy reference externí odkazy speleologická společnost vševěd romantismu hudební skladatelé klavír...`
|
| 291 |
+
3. `v roce v angličtině se pro celou skupinu alfred crompton catherine musinsky jose bonaparte bhart anj...`
|
| 292 |
|
| 293 |
**Context Size 4:**
|
| 294 |
|
| 295 |
+
1. `odkazy reference externí odkazy strategie série`
|
| 296 |
+
2. `odkazy reference související články fotografie v norsku externí odkazy na seznamu světového dědictví...`
|
| 297 |
+
3. `v roce v roce v praze pilotní školu druhá světová válka po roce vojenské služby v polské armádě prot...`
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
### Generated Text Samples (Subword-based)
|
| 301 |
+
|
| 302 |
+
Below are text samples generated from each subword-based Markov chain model:
|
| 303 |
+
|
| 304 |
+
**Context Size 1:**
|
| 305 |
+
|
| 306 |
+
1. `_hraloponodovo._`
|
| 307 |
+
2. `os_zu_va_vu_dulo`
|
| 308 |
+
3. `ekodici_micl_v_s`
|
| 309 |
+
|
| 310 |
+
**Context Size 2:**
|
| 311 |
+
|
| 312 |
+
1. `a_stříjna_se_rozh`
|
| 313 |
+
2. `_příčku_uraven_pe`
|
| 314 |
+
3. `e_na_vítlická_hov`
|
| 315 |
+
|
| 316 |
+
**Context Size 3:**
|
| 317 |
+
|
| 318 |
+
1. `ní_nejčastoru_o_sp`
|
| 319 |
+
2. `_polik_v_com_trans`
|
| 320 |
+
3. `_v_195_zúčasná_náz`
|
| 321 |
+
|
| 322 |
+
**Context Size 4:**
|
| 323 |
+
|
| 324 |
+
1. `_na_v_nicméně_chlaz`
|
| 325 |
+
2. `_se_proje_asistenci`
|
| 326 |
+
3. `_pro_pozdně,_lze_sa`
|
| 327 |
|
| 328 |
|
| 329 |
### Key Findings
|
| 330 |
|
| 331 |
+
- **Best Predictability:** Context-4 (word) with 94.4% predictability
|
| 332 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 333 |
+
- **Memory Trade-off:** Larger contexts require more storage (2,782,368 contexts)
|
| 334 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 335 |
|
| 336 |
---
|
|
|
|
| 346 |
|
| 347 |
| Metric | Value |
|
| 348 |
|--------|-------|
|
| 349 |
+
| Vocabulary Size | 1,830,714 |
|
| 350 |
+
| Total Tokens | 237,612,209 |
|
| 351 |
+
| Mean Frequency | 129.79 |
|
| 352 |
+
| Median Frequency | 5 |
|
| 353 |
+
| Frequency Std Dev | 9362.17 |
|
| 354 |
|
| 355 |
### Most Common Words
|
| 356 |
|
| 357 |
| Rank | Word | Frequency |
|
| 358 |
|------|------|-----------|
|
| 359 |
+
| 1 | v | 7,396,110 |
|
| 360 |
+
| 2 | a | 6,633,731 |
|
| 361 |
+
| 3 | na | 3,536,561 |
|
| 362 |
+
| 4 | se | 3,396,490 |
|
| 363 |
+
| 5 | je | 2,110,163 |
|
| 364 |
+
| 6 | s | 1,781,636 |
|
| 365 |
+
| 7 | z | 1,747,028 |
|
| 366 |
+
| 8 | do | 1,440,810 |
|
| 367 |
+
| 9 | roce | 1,383,007 |
|
| 368 |
+
| 10 | ve | 1,284,897 |
|
| 369 |
|
| 370 |
### Least Common Words (from vocabulary)
|
| 371 |
|
| 372 |
| Rank | Word | Frequency |
|
| 373 |
|------|------|-----------|
|
| 374 |
+
| 1 | mihty | 2 |
|
| 375 |
+
| 2 | socionaut | 2 |
|
| 376 |
+
| 3 | mafjar | 2 |
|
| 377 |
+
| 4 | vlta | 2 |
|
| 378 |
+
| 5 | havlátková | 2 |
|
| 379 |
+
| 6 | makbúsu | 2 |
|
| 380 |
+
| 7 | propfanů | 2 |
|
| 381 |
+
| 8 | propfanu | 2 |
|
| 382 |
+
| 9 | ochmeloff | 2 |
|
| 383 |
+
| 10 | luncași | 2 |
|
| 384 |
|
| 385 |
### Zipf's Law Analysis
|
| 386 |
|
| 387 |
| Metric | Value |
|
| 388 |
|--------|-------|
|
| 389 |
+
| Zipf Coefficient | 0.9138 |
|
| 390 |
+
| R² (Goodness of Fit) | 0.997539 |
|
| 391 |
| Adherence Quality | **excellent** |
|
| 392 |
|
| 393 |
### Coverage Analysis
|
| 394 |
|
| 395 |
| Top N Words | Coverage |
|
| 396 |
|-------------|----------|
|
| 397 |
+
| Top 100 | 27.1% |
|
| 398 |
+
| Top 1,000 | 45.7% |
|
| 399 |
+
| Top 5,000 | 63.0% |
|
| 400 |
+
| Top 10,000 | 70.6% |
|
| 401 |
|
| 402 |
### Key Findings
|
| 403 |
|
| 404 |
+
- **Zipf Compliance:** R²=0.9975 indicates excellent adherence to Zipf's law
|
| 405 |
+
- **High Frequency Dominance:** Top 100 words cover 27.1% of corpus
|
| 406 |
+
- **Long Tail:** 1,820,714 words needed for remaining 29.4% coverage
|
| 407 |
|
| 408 |
---
|
| 409 |
## 5. Word Embeddings Evaluation
|
|
|
|
| 416 |
|
| 417 |

|
| 418 |
|
|
|
|
| 419 |
|
| 420 |
+
### 5.1 Cross-Lingual Alignment
|
| 421 |
+
|
| 422 |
+

|
| 423 |
+
|
| 424 |
+

|
| 425 |
+
|
| 426 |
+
|
| 427 |
+
### 5.2 Model Comparison
|
| 428 |
+
|
| 429 |
+
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|
| 430 |
+
|-------|-----------|----------|------------------|---------------|----------------|
|
| 431 |
+
| **mono_32d** | 32 | 0.7988 | 0.3622 | N/A | N/A |
|
| 432 |
+
| **mono_64d** | 64 | 0.7835 | 0.2893 | N/A | N/A |
|
| 433 |
+
| **mono_128d** | 128 | 0.7363 | 0.2299 | N/A | N/A |
|
| 434 |
+
| **aligned_32d** | 32 | 0.7988 🏆 | 0.3646 | 0.3500 | 0.7360 |
|
| 435 |
+
| **aligned_64d** | 64 | 0.7835 | 0.2898 | 0.5900 | 0.8980 |
|
| 436 |
+
| **aligned_128d** | 128 | 0.7363 | 0.2271 | 0.7320 | 0.9520 |
|
| 437 |
|
| 438 |
### Key Findings
|
| 439 |
|
| 440 |
+
- **Best Isotropy:** aligned_32d with 0.7988 (more uniform distribution)
|
| 441 |
+
- **Semantic Density:** Average pairwise similarity of 0.2938. Lower values indicate better semantic separation.
|
| 442 |
+
- **Alignment Quality:** Aligned models achieve up to 73.2% R@1 in cross-lingual retrieval.
|
| 443 |
+
- **Recommendation:** 128d aligned for best cross-lingual performance
|
| 444 |
|
| 445 |
---
|
| 446 |
+
## 6. Morphological Analysis (Experimental)
|
| 447 |
+
|
| 448 |
+
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
|
| 449 |
+
|
| 450 |
+
### 6.1 Productivity & Complexity
|
| 451 |
+
|
| 452 |
+
| Metric | Value | Interpretation | Recommendation |
|
| 453 |
+
|--------|-------|----------------|----------------|
|
| 454 |
+
| Productivity Index | **5.000** | High morphological productivity | Reliable analysis |
|
| 455 |
+
| Idiomaticity Gap | **-0.741** | Low formulaic content | - |
|
| 456 |
+
|
| 457 |
+
### 6.2 Affix Inventory (Productive Units)
|
| 458 |
+
|
| 459 |
+
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
|
| 460 |
+
|
| 461 |
+
#### Productive Prefixes
|
| 462 |
+
| Prefix | Examples |
|
| 463 |
+
|--------|----------|
|
| 464 |
+
| `-ne` | nezamítl, neomorf, nenapájeným |
|
| 465 |
+
| `-po` | poštulky, ponoršťování, powerkiting |
|
| 466 |
+
|
| 467 |
+
#### Productive Suffixes
|
| 468 |
+
| Suffix | Examples |
|
| 469 |
+
|--------|----------|
|
| 470 |
+
| `-em` | charmsem, treitschkem, holtem |
|
| 471 |
+
| `-ch` | orbitalech, lekebusch, sklízených |
|
| 472 |
+
| `-ho` | vladivostockého, sertoliho, cenokarpního |
|
| 473 |
+
| `-ou` | hobgarskou, výfukovou, robotou |
|
| 474 |
+
|
| 475 |
+
### 6.3 Bound Stems (Lexical Roots)
|
| 476 |
+
|
| 477 |
+
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
|
| 478 |
+
|
| 479 |
+
| Stem | Cohesion | Substitutability | Examples |
|
| 480 |
+
|------|----------|------------------|----------|
|
| 481 |
+
| `ovýc` | 2.16x | 487 contexts | ových, xových, nových |
|
| 482 |
+
| `skéh` | 2.15x | 392 contexts | ského, lského, urského |
|
| 483 |
+
| `skýc` | 1.97x | 237 contexts | ských, skýcov, tských |
|
| 484 |
+
| `ický` | 1.57x | 496 contexts | tický, bický, úpický |
|
| 485 |
+
| `nské` | 1.53x | 491 contexts | anské, inské, ínské |
|
| 486 |
+
| `ován` | 1.44x | 594 contexts | ování, kován, zování |
|
| 487 |
+
| `ické` | 1.46x | 499 contexts | tické, lické, mické |
|
| 488 |
+
| `ledn` | 1.59x | 250 contexts | lednu, ledna, ledný |
|
| 489 |
+
| `itel` | 1.36x | 634 contexts | nitel, litel, pitel |
|
| 490 |
+
| `cház` | 1.52x | 287 contexts | chází, schází, ochází |
|
| 491 |
+
| `dkaz` | 2.66x | 23 contexts | odkaz, odkaze, odkazy |
|
| 492 |
+
| `xter` | 1.81x | 76 contexts | exter, xterm, extern |
|
| 493 |
+
|
| 494 |
+
### 6.4 Affix Compatibility (Co-occurrence)
|
| 495 |
+
|
| 496 |
+
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
|
| 497 |
+
|
| 498 |
+
| Prefix | Suffix | Frequency | Examples |
|
| 499 |
+
|--------|--------|-----------|----------|
|
| 500 |
+
| `-ne` | `-ch` | 14 words | nepropouštějících, netermínovaných |
|
| 501 |
+
| `-ne` | `-ho` | 10 words | nejpokročilejšího, nezpochybnitelného |
|
| 502 |
+
| `-ne` | `-ou` | 9 words | nestejnou, nerozšiřitelnou |
|
| 503 |
+
| `-po` | `-ho` | 9 words | podmínkového, polštářovitého |
|
| 504 |
+
| `-po` | `-ch` | 7 words | pohodlnějších, polohovkách |
|
| 505 |
+
| `-po` | `-ou` | 6 words | ponitranskou, pomátnou |
|
| 506 |
+
| `-po` | `-em` | 3 words | pollackem, povříslem |
|
| 507 |
+
|
| 508 |
+
### 6.5 Recursive Morpheme Segmentation
|
| 509 |
+
|
| 510 |
+
Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`).
|
| 511 |
+
|
| 512 |
+
| Word | Suggested Split | Confidence | Stem |
|
| 513 |
+
|------|-----------------|------------|------|
|
| 514 |
+
| nedoloženou | **`ne-doložen-ou`** | 6.0 | `doložen` |
|
| 515 |
+
| nepochybovala | **`ne-po-chybovala`** | 6.0 | `chybovala` |
|
| 516 |
+
| nepostaral | **`ne-po-staral`** | 6.0 | `staral` |
|
| 517 |
+
| nacionálem | **`nacionál-em`** | 4.5 | `nacionál` |
|
| 518 |
+
| chimentiho | **`chimenti-ho`** | 4.5 | `chimenti` |
|
| 519 |
+
| prostonárodního | **`prostonárodní-ho`** | 4.5 | `prostonárodní` |
|
| 520 |
+
| klokotských | **`klokotský-ch`** | 4.5 | `klokotský` |
|
| 521 |
+
| bibliografického | **`bibliografické-ho`** | 4.5 | `bibliografické` |
|
| 522 |
+
| nesvědčily | **`ne-svědčily`** | 4.5 | `svědčily` |
|
| 523 |
+
| nenavázali | **`ne-navázali`** | 4.5 | `navázali` |
|
| 524 |
+
| ibragimovem | **`ibragimov-em`** | 4.5 | `ibragimov` |
|
| 525 |
+
| zeměplošských | **`zeměplošský-ch`** | 4.5 | `zeměplošský` |
|
| 526 |
+
| hliníkových | **`hliníkový-ch`** | 4.5 | `hliníkový` |
|
| 527 |
+
| etylenglykolem | **`etylenglykol-em`** | 4.5 | `etylenglykol` |
|
| 528 |
+
| mnohosamicového | **`mnohosamicové-ho`** | 4.5 | `mnohosamicové` |
|
| 529 |
+
|
| 530 |
+
### 6.6 Linguistic Interpretation
|
| 531 |
+
|
| 532 |
+
> **Automated Insight:**
|
| 533 |
+
The language Czech shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
|
| 534 |
+
|
| 535 |
+
---
|
| 536 |
+
## 7. Summary & Recommendations
|
| 537 |
|
| 538 |

|
| 539 |
|
|
|
|
| 541 |
|
| 542 |
| Component | Recommended | Rationale |
|
| 543 |
|-----------|-------------|-----------|
|
| 544 |
+
| Tokenizer | **64k BPE** | Best compression (4.59x) |
|
| 545 |
+
| N-gram | **2-gram** | Lowest perplexity (449) |
|
| 546 |
+
| Markov | **Context-4** | Highest predictability (94.4%) |
|
| 547 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 548 |
|
| 549 |
+
|
| 550 |
---
|
| 551 |
## Appendix: Metrics Glossary & Interpretation Guide
|
| 552 |
|
|
|
|
| 736 |
author = {Kamali, Omar},
|
| 737 |
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
|
| 738 |
year = {2025},
|
| 739 |
+
doi = {10.5281/zenodo.18073153},
|
| 740 |
+
publisher = {Zenodo},
|
| 741 |
url = {https://huggingface.co/wikilangs}
|
| 742 |
institution = {Omneity Labs}
|
| 743 |
}
|
|
|
|
| 753 |
- 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
|
| 754 |
- 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
|
| 755 |
- 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
|
| 756 |
+
- 🤝 Sponsor: [Featherless AI](https://featherless.ai)
|
| 757 |
---
|
| 758 |
*Generated by Wikilangs Models Pipeline*
|
| 759 |
|
| 760 |
+
*Report Date: 2026-01-08 17:02:58*
|
models/embeddings/aligned/cs_128d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ee73a43ec364b9064a5ce15c015db41e81048adbd31d37088f27c0d6393be945
|
| 3 |
+
size 2592173419
|
models/embeddings/aligned/cs_128d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "cs", "dim": 128, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/cs_128d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1fd4a4b58d02359e21ce26e20e4016044953c9fff3f7dc1b954aff16af53fbf2
|
| 3 |
+
size 65664
|
models/embeddings/aligned/cs_128d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "cs",
|
| 3 |
+
"dimension": 128,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 248433,
|
| 7 |
+
"vocab_size": 1503404
|
| 8 |
+
}
|
models/embeddings/aligned/cs_32d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4d1c30712ea75937478c58b7fb8c1c3caf83309663a594ca004504a00193bb46
|
| 3 |
+
size 669559147
|
models/embeddings/aligned/cs_32d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "cs", "dim": 32, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/cs_32d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:efd67a9b2efccb4b9ebbd0d7fdbe5b7b688d27853ec7334edef1eb0fa5a25a6f
|
| 3 |
+
size 4224
|
models/embeddings/aligned/cs_32d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "cs",
|
| 3 |
+
"dimension": 32,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 248433,
|
| 7 |
+
"vocab_size": 1503404
|
| 8 |
+
}
|
models/embeddings/aligned/cs_64d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8d7e7c706963168c9f66fbb72372f5f81606711130ef7466f09e14ed88e7a4d0
|
| 3 |
+
size 1310430571
|
models/embeddings/aligned/cs_64d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "cs", "dim": 64, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/cs_64d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fcb8041a156dac565236b7bc938205bae3bdf77a3b16b4d40c14ffeb65c7cadb
|
| 3 |
+
size 16512
|
models/embeddings/aligned/cs_64d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "cs",
|
| 3 |
+
"dimension": 64,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 248433,
|
| 7 |
+
"vocab_size": 1503404
|
| 8 |
+
}
|
models/embeddings/monolingual/cs_128d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ee73a43ec364b9064a5ce15c015db41e81048adbd31d37088f27c0d6393be945
|
| 3 |
+
size 2592173419
|
models/embeddings/monolingual/cs_128d_metadata.json
CHANGED
|
@@ -3,11 +3,13 @@
|
|
| 3 |
"dimension": 128,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
-
"
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
-
"epochs": 5
|
|
|
|
|
|
|
| 11 |
},
|
| 12 |
-
"vocab_size":
|
| 13 |
}
|
|
|
|
| 3 |
"dimension": 128,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 128
|
| 13 |
},
|
| 14 |
+
"vocab_size": 1503404
|
| 15 |
}
|
models/embeddings/monolingual/cs_32d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4d1c30712ea75937478c58b7fb8c1c3caf83309663a594ca004504a00193bb46
|
| 3 |
+
size 669559147
|
models/embeddings/monolingual/cs_32d_metadata.json
CHANGED
|
@@ -3,11 +3,13 @@
|
|
| 3 |
"dimension": 32,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
-
"
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
-
"epochs": 5
|
|
|
|
|
|
|
| 11 |
},
|
| 12 |
-
"vocab_size":
|
| 13 |
}
|
|
|
|
| 3 |
"dimension": 32,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 32
|
| 13 |
},
|
| 14 |
+
"vocab_size": 1503404
|
| 15 |
}
|
models/embeddings/monolingual/cs_64d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8d7e7c706963168c9f66fbb72372f5f81606711130ef7466f09e14ed88e7a4d0
|
| 3 |
+
size 1310430571
|
models/embeddings/monolingual/cs_64d_metadata.json
CHANGED
|
@@ -3,11 +3,13 @@
|
|
| 3 |
"dimension": 64,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
-
"
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
-
"epochs": 5
|
|
|
|
|
|
|
| 11 |
},
|
| 12 |
-
"vocab_size":
|
| 13 |
}
|
|
|
|
| 3 |
"dimension": 64,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 64
|
| 13 |
},
|
| 14 |
+
"vocab_size": 1503404
|
| 15 |
}
|
models/subword_markov/cs_markov_ctx1_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f728385f32db4d56eb98f894af4f69b3ed5eff19c0b9d1c11e941cba1f3f8c54
|
| 3 |
+
size 839807
|
models/subword_markov/cs_markov_ctx1_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cs",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cs",
|
| 5 |
+
"unique_contexts": 14369,
|
| 6 |
+
"total_transitions": 1591006734
|
| 7 |
}
|
models/subword_markov/cs_markov_ctx2_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9c686d9a25d6802505309d41e46898ae44a9610103bbf6b43b177215526f053b
|
| 3 |
+
size 4923338
|
models/subword_markov/cs_markov_ctx2_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cs",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cs",
|
| 5 |
+
"unique_contexts": 123767,
|
| 6 |
+
"total_transitions": 1590425862
|
| 7 |
}
|
models/subword_markov/cs_markov_ctx3_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2efc4336d93106340240bfa8c0fcdb41850c4e711995576d18cac4a39b2921fc
|
| 3 |
+
size 21935499
|
models/subword_markov/cs_markov_ctx3_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cs",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cs",
|
| 5 |
+
"unique_contexts": 583275,
|
| 6 |
+
"total_transitions": 1589844990
|
| 7 |
}
|
models/subword_markov/cs_markov_ctx4_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:16d70dfb8facb64efbcd9b152d807fa295c04a1b0c433d6daa1b99f45fcf62c6
|
| 3 |
+
size 89927521
|
models/subword_markov/cs_markov_ctx4_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cs",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cs",
|
| 5 |
+
"unique_contexts": 2782368,
|
| 6 |
+
"total_transitions": 1589264118
|
| 7 |
}
|
models/subword_ngram/cs_2gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f3bca592f8a143683b686f0e37a72e554f552c21ef033b2ff317d7964000b9bc
|
| 3 |
+
size 433014
|
models/subword_ngram/cs_2gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cs",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cs",
|
| 5 |
+
"unique_ngrams": 30223,
|
| 6 |
+
"total_ngrams": 1591006734
|
| 7 |
}
|
models/subword_ngram/cs_3gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:39fc7ee4da840ca0792f53822766d4e880f321021b7b2192a655d5d175332d23
|
| 3 |
+
size 3254803
|
models/subword_ngram/cs_3gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cs",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cs",
|
| 5 |
+
"unique_ngrams": 255109,
|
| 6 |
+
"total_ngrams": 1590425862
|
| 7 |
}
|
models/subword_ngram/cs_4gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b789c05230d10bdbd3be1e9661bec890f8aa337f333ec24cdfd811b63240337a
|
| 3 |
+
size 20392535
|
models/subword_ngram/cs_4gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cs",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cs",
|
| 5 |
+
"unique_ngrams": 1646964,
|
| 6 |
+
"total_ngrams": 1589844990
|
| 7 |
}
|
models/subword_ngram/cs_5gram_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c457c38c3eb730bc5b170bc78b1ffb26e1125256cf7ff9765eaec66b334f858a
|
| 3 |
+
size 80495807
|
models/subword_ngram/cs_5gram_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 5,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "cs",
|
| 5 |
+
"unique_ngrams": 6437902,
|
| 6 |
+
"total_ngrams": 1589264118
|
| 7 |
+
}
|
models/tokenizer/cs_tokenizer_16k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a79a59e7e6f05b35164ccd20e22fd357803c388d68fffcb0739fea4e66115909
|
| 3 |
+
size 514491
|
models/tokenizer/cs_tokenizer_16k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/cs_tokenizer_32k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:92d519e9300c95d83a96fa4f4de0a13584fb4b643d9dd8c8d09f4fad15dff835
|
| 3 |
+
size 803835
|
models/tokenizer/cs_tokenizer_32k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/cs_tokenizer_64k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3e547414ac25c5799f3cbcf8c9d78e1473f21398b1b2e6e9e6d4668900be78de
|
| 3 |
+
size 1397324
|
models/tokenizer/cs_tokenizer_64k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/cs_tokenizer_8k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a2101aaa123afbd98d94b7170eb4cf00b0c5ef0dfc983c7359e00730b098aed0
|
| 3 |
+
size 374590
|
models/tokenizer/cs_tokenizer_8k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/vocabulary/cs_vocabulary.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0f4ac7c5f2fe22fcc2625fb967be7f5b9111f19cfce6c05ef270a509337034c8
|
| 3 |
+
size 28462430
|
models/vocabulary/cs_vocabulary_metadata.json
CHANGED
|
@@ -1,16 +1,17 @@
|
|
| 1 |
{
|
| 2 |
"language": "cs",
|
| 3 |
-
"vocabulary_size":
|
|
|
|
| 4 |
"statistics": {
|
| 5 |
-
"type_token_ratio": 0.
|
| 6 |
"coverage": {
|
| 7 |
-
"top_100": 0.
|
| 8 |
-
"top_1000": 0.
|
| 9 |
-
"top_5000": 0.
|
| 10 |
-
"top_10000": 0.
|
| 11 |
},
|
| 12 |
-
"hapax_count":
|
| 13 |
-
"hapax_ratio": 0.
|
| 14 |
-
"total_documents":
|
| 15 |
}
|
| 16 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"language": "cs",
|
| 3 |
+
"vocabulary_size": 1830714,
|
| 4 |
+
"variant": "full",
|
| 5 |
"statistics": {
|
| 6 |
+
"type_token_ratio": 0.01593860093466459,
|
| 7 |
"coverage": {
|
| 8 |
+
"top_100": 0.26912381903885885,
|
| 9 |
+
"top_1000": 0.4535615447036626,
|
| 10 |
+
"top_5000": 0.6242837292543639,
|
| 11 |
+
"top_10000": 0.7003857714922751
|
| 12 |
},
|
| 13 |
+
"hapax_count": 1988181,
|
| 14 |
+
"hapax_ratio": 0.520616827642551,
|
| 15 |
+
"total_documents": 580872
|
| 16 |
}
|
| 17 |
}
|
models/vocabulary/cs_vocabulary_top.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b61261bafc47e9fd112290a889706214bc8ebfd90036ac510310fd8a7f0f99bf
|
| 3 |
+
size 15708837
|
models/vocabulary/cs_vocabulary_top_metadata.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "cs",
|
| 3 |
+
"vocabulary_size": 1000000,
|
| 4 |
+
"variant": "top",
|
| 5 |
+
"statistics": {
|
| 6 |
+
"type_token_ratio": 0.01593860093466459,
|
| 7 |
+
"coverage": {
|
| 8 |
+
"top_100": 0.26912381903885885,
|
| 9 |
+
"top_1000": 0.4535615447036626,
|
| 10 |
+
"top_5000": 0.6242837292543639,
|
| 11 |
+
"top_10000": 0.7003857714922751
|
| 12 |
+
},
|
| 13 |
+
"hapax_count": 1988181,
|
| 14 |
+
"hapax_ratio": 0.520616827642551,
|
| 15 |
+
"total_documents": 580872,
|
| 16 |
+
"top_vocab_size": 1000000,
|
| 17 |
+
"coverage_ratio": 0.983133787887407,
|
| 18 |
+
"tokens_excluded": 830714
|
| 19 |
+
}
|
| 20 |
+
}
|
models/word_markov/cs_markov_ctx1_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:daba16a55ffa7e1547d39e480bc3ed52259c7bc93bc3947e6db1312e0e5cdc35
|
| 3 |
+
size 571097267
|
models/word_markov/cs_markov_ctx1_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "cs",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "cs",
|
| 5 |
+
"unique_contexts": 3817910,
|
| 6 |
+
"total_transitions": 239019518
|
| 7 |
}
|